
 WGLIB version 1.01
 Released: July, 1992
 Copyright InfoSoft, 1989-1991, 1992

 The files that should be included on this disk or .ZIP archive are:
 WGLIB101.DOC - Library documentation.
 WGLIBGLO.BAS - Compleat declarations for WGLib 1.01.
 WGLIBDEM - Various VB source files that make up a demo of WGLib
 controls and routines
 WGLIB.DLL - Windows 3.x Dynamic Link Library for VB development
 MAILER - Mailer to register your copy of WGLib.

 I. WGLib Compatibility

 WGLib 1.01 is a completely new product designed to enhance the function-
 ality and esthetics of Microsoft Visual Basic. The WGLib routines are
 based on the functionality that GLib 2.01/x brings to BASIC PDS. WGLib
 is designed to work EXCLUSIVELY with Microsoft's VISUAL BASIC 1.00 and
 Windows 3.0 / 3.1. Future Microsoft versions of these products may or
 may not introduce compatibility issues not addressed in WGLIB 1.01.

 Unless otherwise noted, all routines used in WGLib are written in
 assembler with MASM 5.0 or 6.0, with custom controls written in Microsoft
 C v. 6.00. Except as noted in specific situations we make use of fully
 documeted DOS, WIN API and VB API calls in order to maintain system
 integrity under Windows.

 II. WGLib 1.01 System Requirements

 WGLib is an add-on set of routines for Microsoft Visual BASIC. These
 routines provide added functionality and power to VB and replace func-
 tions lost in the conversion from QB or QBX to VB.

 In general, if you can run Visual Basic, you can use WGLIB. Specifical-
 ly, however, you need at least an 80286 processor (weird to require an
 'AT' to run a BASIC huh?), 1 MB of memory, Visual BASIC 1.00 and Windows
 3.00. These are largely requirements for VB and/or Windows.

 Copyright (C) InfoSoft, 1991, 1992

 i

 III. License, Terms and Use:

 You are granted free and unlimited personal use of any and all routines
 in the distribution development library (".DLL") that you find of value.
 Furthermore, you are free to pass along the BBS distribution files
 (listed at the start of this document), and only the distribution files,
 as long as they are passed along as a whole according to the guidlines
 listed above.

 No one is granted any permission to share or pass along any development
 DLL libraries, object modules or object libraries (LIB). As distribut-
 ed, the WGLib documentation, demo and the environment library (".DLL")
 provide you with everything you need to call and execute WGLib routines
 from within the VB environment.

 There are no time limits on how long you may use and examine the viabili-
 ty of the distribution DLL. Likewise, your personal use of the distribu-
 tion DLL also has no time restriction on it. This provides a generous
 forum for purposes of sampling, testing and evaluation and allows
 virtually unlimited latitude in terms of personal use or as a tutorial
 regarding some of the more advanced features in today's BASIC. This
 personal use specifically does excludes the right to distribute the .DLL
 as a runtime module. That is, if your sole intent with WGLib is personal
 use or experimental use from within the environment, no monies are
 requested, expected or solicited.

 The development time DLL is unsuitable for use as a runtime support DLL
 and any attempt to use it as such is a violation of these terms. If you
 find some of the routines of value and desire to incorporate them into
 .EXE applications, the runtime DLL library of routines and permission to
 use them in such applications may be licensed as described below. That
 is, licensing provides both the right to use the Design time DLL, as well
 the right to distribute the Runtime DLL in support of your application.

 Under no circumstances may these routines contained in the user libraries
 (.LIBs and/or .DLLs) be distributed individually or without the accompa-
 nying documentation, which is an integral part of the package, nor may
 the documentation be altered in anyway.

 A RUNTIME DLL and license to use and distribute the same, is granted only
 to the person or company providing payment or named on the mailer. No
 grandfather, parent or child usage rights are implied or granted. That
 is, a RUNTIME license purchased by an individual grant the usage of the
 library by that individual, not their employer or anyone outside the
 immediate family. Conversely, a license purchased by a company, corpora-
 tion, business or other organization does not imply or grant any person
 employed, allied or associated with that organization personal usage or
 distribution rights without also purchasing a RUNTIME license.

 Copyright (C) InfoSoft, 1991, 1992
 ii

 Under no circumstances may the routines in the WGLIB package, source,
 object files, libraries or documentation be distributed by or otherwise
 become a part of, or affiliated with any group or organization involved
 in the distribution of what is generally been come to be known as
 SHAREWARE. WGLib is not SHAREWARE and distribution for disk or distribu-
 tion fees, or for fees of any sort is expressly forbidden without written
 consent. This includes supplying the routines, library and or documenta-
 tion for so-called disk fees.

 Finally, the publishers make no claims that the routines herein will fit
 your needs, simply that in all testing and prior use that they worked for
 us and that you may find them interesting and helpful in your program-
 ming. Any liability for the use, misuse or inability to use the WGLIB
 routines or libraries, is solely that of the users.

 III. Support
 As long as it exists, we will support and entertain questions regarding
 QB and/or GLib as well as VB and/or WGlib via the QuickBASIC conference
 on The Information Booth, (316) 684 8744, 1200 - 2400 bps, 24 hrs.

 If you have a problem with WGLib, you _MUST_ be prepared to supply
 supporting source code demonstrating the problem you are having. We are
 more than a little interested in any WGLib or QB/VB bugs that you might
 find, but do not have the time to track down problems based on vague
 descriptions of problems when we cannot see if you are using the routine
 right. PLEASE be specific and supply source examples.

 VI Purchasing WGlib

 To register this version of WGLib simply read and fill out the enclosed
 order form (MAILER), enclosing sufficient funds (checks and money orders
 must be payable in US Funds) and mail it to the address on the mailer.
 In return you'll receive, by return mail a diskette containing:
 o WGLIB101.DOC - Complete documentation
 o WGLIB.DLL - Development DLL
 o WGLIBR.DLL - Runtime DLL
 o WGLIBQRF.EXE - WGLib QRF (quick reference program)
 o WGLIBDEM.EXE - Compiled Demo and complete source code

 o SysGauge.EXE - Standalone WIN System Resource gauge
 o WGLIB.HLP - WGLib help in WinHelp format
 o WGLIB101.BAS - Ancillary routines for WGLib 1.01
 o LAUNCHVB.EXE - Program to start up VB with WGLib and it's
 controls instantly available
 o WGLIBGLO.BAS - Declarations for all WGLib routines
 o WSETUP.EXE - Setup program to install WGLib as well as create
 Program Manager WGLib group and group items

 Copyright (C) InfoSoft, 1991, 1992
 iii

 Note: Object modules are not supplied since recombining into a DLL
 requires the use of the SDK and CDK.

 Upgrading a previous GLib version must also be done via the mail order
 form.

 In all cases, please the mailer so that we can identify diskette type, VB
 version etc. Please allow 2-3 weeks for delivery.

 Mailing Address:
 InfoSoft
 WGLib 1.01
 PO Box 782057
 Wichita, Ks
 67278-2057

 Copyright (C) InfoSoft, 1991, 1992
 iv

 Calling Conventions

 Each generation in the QB/QBX/VB family seems to produce new, and
 theoretically improved, variable passing capabilities between the main
 program and called routines. Along with these capabilities come certain
 cautions for the programmer.

 Visual Basic passes all variables by 32-bit reference by default. This
 is the QB equivalent of all routines being SEG type calls. The reason
 for this is due to how the Windows API manages memory and it is not
 altogether bad. In this format VB passes the segment:offset address of
 the variable to the called routine. However, this is sometimes overkill:
 if the routine does not need to actually change a given variable, rather
 the variable is used as a flag to indicate an operation or such, there is
 no need to have access to the variable, just the value.

 For example, take BitChkInt [which checks the given bit in an integer
 variable and returns zero or non zero indicating set or not set;
 syntax: retc = BitChkInt%(varY%, bitX%)].
 Since we are simply going to CHECK the bit x in the variable y, and the
 return code will indicate the result, the routine need not have access to
 either item, just the VALUE of them.

 To accomplish this, we can use the BYVAL operator to tell VB to simply
 pass the VALUE of varY and bitX. Rather than passing 4 bytes per
 parameter, VB will simply pass the value of the integers or 2 bytes each.
 In so doing, code size is slightly reduced as is execution time (there
 are fewer ticks used in fetching a passed value versus far addresses).

 The down side is that should you pass a variable by far reference when

 the routine expects it BYVAL, you will very likely cause a UAE (Unexpect-
 ed Application Error). This is very unlikely to happen if your DECLARE
 statements are correct, and the Win API seems to watch all this quite
 carefully and when the slightest thing goes wrong your program is aborted
 lest it interfere with other processes running. This is one of the
 legacies of running in protected mode. So, if you get UAE's try to track
 down where it happens by using the VB step mode then wherever it crashes,
 check that the syntax is correct.

 One of the most major changes is in string management. By default,
 when a string is past to a library routine, only a handle to that
 string is past. To actually access the string data, the DLL routine
 must call upon the VB API to get a (far) pointer to the string.
 This would be bad except that VB also allows you to pass a pointer to
 a string as opposed to a handle. These are declared as BYVAL as well
 (odd name for that,huh?)

 The VB API instructions are a little vague on this but it appears that
 when passing a string BYVAL, rather than passing a far pointer to a
 handle, a pointer to the string is passed AND the string is a 'C' type
 string in that it is null-terminated or ASCII/z. This means that where
 GLib for BASIC PDS or QB had to copy that string to local memory and
 tack on a null for DOS file access, we can let VB do the work simply by
 passing the string BYVAL. This has the side effect of making most VB /

 Copyright (C) InfoSoft, 1991, 1992
 v

 DOS file functions contain less code than the same routine would for
 QBX/QB. It also opens up some unique capabilities in some of the file
 routines.

 In these cases, all you need to make sure is that the DECLARE
 statement is properly set up. For example:

 Declare Function FOpen% Lib "WGlib.DLL" (ByVal Fil$, FHandle%)

 When called, VB will make an ASCII/z copy of Fil$ and pass it to the
 FOpen routine in the WGLIB.DLL. Since the DOS funtion to open a file
 also requires a null terminated string, the routine receives the string
 ready to use!

 Note that in addition to returning an error code, FOpen will set FHandle
 to a new value: the handle of the file. In this case, you cannot pass
 ByVal. First, if you pass a 0 (the VALUE of FHandle), rather than the
 address of a variable that happens to equal zero, how can the routine
 change the value of 0 to 5 to indicate the file handle? Second, the
 routine expects to receive a 32 bit far pointer, not a 16 bit value, so
 passing FHandle ByVal will likely cause a UAE.

 The easiest way to be sure that your code has the proper declaration is

 to copy those you need or use from the enclosed WGLIBDEC.BAS into your
 code. It is not advisable that you load the file into each project as
 the memory consumed by the file is almost always more than necessary.

 Most of the routines in WGLib are FUNCTIONS meaning that they return a
 value indicating something, as opposed to only changing the values of
 passed parameters. A few routines are Sub routines. If properly
 Declared, you can invoke these in your code without the keyword CALL.
 As far as the documentation goes, we prefer to use CALL in the syntax
 examples simply to clarify it. You can choose to either use or omit
 CALLin your invocations, but beware that if you omit CALL, you MUST
 also omit the parenthesis. For example 'CALL ThatThing(parm1)' becomes
 'ThatThing parm1'. Mixing conventions is a recipe for disaster because
 parentheses around a variable means the same thing as ByVal. So, the
 syntax 'ThatThing (parm1)' would pass the 16 bit VALUE Parm1 as opposed
 to the 32 bit ADDRESS of variable Parm1. Keep this in mind as you
 invoke SUB type routines.

 Copyright (C) InfoSoft, 1991, 1992
 vi

 DLLs

 If you are familiar with QLBs for QBX or QB, you will like DLLs much
 better than LIBs for the most part. For years, I have been preaching and
 teaching people to make project-specific QLBs so that only as much memory
 as is required for called routines is consumed. Dynamic Link Libraries
 combine the best of both QLBs and LIBs.

 Unlike DOS's LINK which will pull those routines needed from a LIB into
 the end EXE, routines are only loaded from DLL's when called (NOT the
 entire library as with a QLB!). Yet like QLBs, the procedures in a DLL
 are available at development time.

 Another thing you can do with a DLL that you cannot do with LIB/QLBs, is
 to use multiple DLLs. Since only those routines called are loaded (WHEN
 they are needed) into memory, you can DECLARE routines from any of a
 number of DLLs in the same program. However since you cannot easily

 create custom DLL's (this requires the Windows SDK and CDK), you would
 have to distribute each and every DLL referenced including VBRUN100.DLL
 even if for only 1 routine -- and they can get quite large.

 WINDOWS Programming Considerations

 A. Windows and VB API considerations

 Under Windows, some things get almost hopelessly convoluted in attempting
 the simplest things. For example, to open a file you no longer simply
 call DOS but now have to perform some setup steps, allocate a local
 buffer, then ask the WIN API to ask DOS to open the file and please, give
 me the handle.

 Since Windows is not nearly as mature as DOS, we have avoided using
 undocumented procedures or calls and adhered to the WIN API guidlines as
 best we could. Naturally, all video related routines and most BIOS
 routines have either been removed or reworked to go thru the WIN API.

 One major consideration when writing a VB Windows program, and that has
 to do with files and file I/O. Under QB/QBX and DOS, you could be quite
 certain that yours what the only program running that might need access
 or perform I/O on a given file.

 Under WINDOWS, you assume the opposite. The first thing that this
 entails is that you open a file when you need it and not before, and
 close it as soon as you can. One reason for this is so that you do not
 inadvertantly deny file access to another process.

 Another reason for this is in system resources such as file handles.
 Opening a file and keeping it open needlessly, denies access to this
 resource until you release it. Such actions may cause another program or
 process to abort or crash.

 Copyright (C) InfoSoft, 1991, 1992
 vii

 For these reasons a few of the GLib file functions have been modified for
 inclusion into WGLib. Primarily, this means that ancillary file func-
 tions such as FAttrGet now act on a file name rather than a handle
 thereby aiding you in keeping files closed except during actual I/O.

 B. Calling Convention

 Most GLib routines pass parameters by reference - only a few were BYVAL.
 Since there is actually an advantage to using VB's ByVal method, espe-
 cially with strings, in converting to WGLib anytime code or execution
 overhead could be avoided by using alternate syntax or calling conven-
 tions, we availed ourselves of this.

 This means that most syntax that you may be familiar with has changed.
 For the most part, all that is required is a modified DECLARE statement.

 C. Multiple names

 For years we have supported multiple names for some routines so that the
 programmer could use the one that makes most sense to them. FRep could
 also be callled as FReplicate, for instance. While such multiple names
 could be affected for VB as well, we have eliminated them for routine
 management purposes. You can use the ALIAS parameter to set the name to
 whatever you like:

 Declare Function FReplicate Lib "WGLIB.DLL" Alias "FRep" (BYVal _
 Src$, ByVal Dst$, ByVal Buffer$).

 D. Memory Allocation

 Since the Windows API allows greater freedon in allocating memory for
 local routine use (such as is needed in file copy type operations), we
 have relieved you, the programmer, of the chore of buffer management.

 Examples:
 DOS GLib: Errc = FCopy(Src$, Dst$, Buffer$)
 WIN WGLib: Errc = FCopy(Src$, Dst$)

 By eliminating the Buffer$, the routine is slightly easier to use, less
 cumbersome and less error prone. Each routine that requires internal
 scratch space or a buffer allocates it's own via the WIN API.

 Copyright (C) InfoSoft, 1991, 1992
 viii

 vii

 I. WGLib 1.01 Functions and Sub Programs

 Name: ArgCnt Type: FUNCTION

 Syntax: QArgs = ArgCnt()

 Returns the number of arguments in the command tail delimited by a
 space. That is, with 'FOOBAR.EXE /qwerty /1 /2 /3 /4', ArgCnt would
 return 5 as the number of command tail arguments. Example and see also:
 See ArgVar$

 Name: ArgVar Type: FUNCTION
 Syntax: var$ = ArgVar$(arg)

 ArgVar is the complementary routine to ArgCnt(qv) returning a specified
 argument from the command tail in the programs PSP. ArgVar returns a
 string variable representing the unparsed specified argument from the
 command tail (care should be taken that the argument request - arg - is
 greater than zero).

 As with ArgCnt, ArgVar deals with the ACTUAL command tail found in the
 program's PSP, so accomodations should be made for when your program
 running as a VB file versus as a EXE (see VBLoaded).
 Example - Load command tail elements into an array:
 QArgs = ArgCnt
 REDIM Args$(ArgCnt)
 FOR x = 1 to QArgs
 Args$(x) = ArgVar$(x)
 NEXT x

 Name: ArrayIncrI Type: Sub
 Syntax: CALL ArrayIncrI(Array%(begin), ByVal Amt%, ByVal NumEls%)

 Increments each element in an integer array by a given amount. The array
 is passed with the starting element as the subscript, the ending point is
 designated the number of elements to do in NumEls. The constant amount
 that each element is incremented is that of Amt. This is actually a SUB
 but can be declared as a function for uniform calling. In any case, the
 return can be ignored. See Also ArrayTotI and ArrayNDX.

 Name: ArrayIncrL Type: Sub
 Syntax: CALL ArrayIncrL(Array&(begin), ByVal Amt%, ByVal NumEls%)

 This routine performs the same function as ArrayIncrL except that it acts
 on a long integer array.

 Copyright (C) InfoSoft, 1991, 1992
 1

 Name: ArrayInitI Type: Sub

 Syntax: CALL ArrayInitI(Arry%(begin), ByVal iVal%,_
 ByVal NumEls%)

 Initializes all or part of an integer array to constant value. All
 elements in the array beginning with the subscript passed and thru the
 number of elements indicated by the NumEls parameter are initialized by
 the value of the iVal parameter. See also ArrayNDX, ArrayIncrI and
 ArrayTotI.

 Name: ArrayInitL Type: Sub
 Syntax: retc = ArrayInitL(Array&(begin), ByVal lVal&,_
 ByVal NumEls&)

 Initializes the desired elements of a long integer array to a desired
 constant value. Aside from the array being long rather integer and the
 initialization value being long as well, this is identical to ArrayInitI.

 Name: ArrayInitNDX Type: SUB
 Syntax: CALL ArrayNDX(Array(begin), ByVal StartVal,_
 ByVal NumEls)

 Initializes an integer array in sequential fashion (Array(1)=1,
 Array(2)=2 etc) making it ideal for use in indexing routines. The first
 element to be acted upon is passed as the Array subscript on the call,
 and the number of subsequent elements to initialize is controlled by the
 value of NumEls. See also ArrayInitI, ArrayTotI.

 Name: ArrayTotI Type: FUNTION
 Syntax: res& = ArrayTotI(Array(begin), ByVal NumEls%)

 Scans a desired range of an integer array and returns a long integer
 representing the sum of all those elements. The start range is passed as
 the array subscript and the number of elements to sum is passed in the
 NumEls parameter. Note that while this acts on an integer array, it
 returns a long integer to avoid overflow possibilities.

 Name: ArrayTotL Type: FUNCTION
 Syntax: sum& = ArrayTotL(Array&(begin), ByVal NumEls)

 This performs identically to ArrayTotI except that it sums a long integer
 array.

 Copyright (C) InfoSoft, 1991, 1992

 2

 Name: ArrayToCombo Type: SUB
 Syntax: CALL ArrayToCombo(CBCtl As Control, Array$(start),_
 ByVal NumEls)

 Transfers the contents of an array to a Combo Box.

 Doing this in a loop with the Additem method has two drawbacks. First,
 it is dreadfully slow; some systems experience a 400% speed up of this
 operation using ArrayToCB. Second, in such a loop, after each item is
 transferred to the control, VB and/or the WIN API will flicker the screen
 - whether or not the addition is visible on the screen!

 Note: Especially during development, it is important that you periodical-
 ly use CBClearList to clear the contents of the Combo Box. Each call to
 ArrayToLB will simply add elements to the control, if they are never
 cleared you run the risk of running out of memory (VB handles only arrays
 under 64k - shades of QB 3). LBClearList will quickly clear the contents
 of a the List Box freeing memory for the rest of your program.
 See also: ComboToArray

 Name: ArrayToList Type: SUB
 Syntax: CALL ArrayToList(Ctl As Control, Array$(start),_
 Byval NumEls)

 Transfers the contents of an array to a List Box.

 Doing this in a loop with teh Additem method has two drawbacks. First,
 it is dreadfully slow; some systems experience a 300% speed up of this
 operation using ArrayToLB. Second, in such a loop, after each item is
 trasferred to the control, VB and/or the WIN API will flicker the
 screen - whether or not the addition is visible on the screen!

 Note: Especially during development, it is important that you periodical-
 ly use LBClearList to clear the contents of the List Box. Each call to
 ArrayToLB will simply add elements to the List Box, if they are never
 cleared you run the risk of running out of memory (VB handles only arrays
 under 64k - shades of QB 3). LBClearList will quickly clear the contents
 of a the List Box freeing memory for the rest of your program.
 See also: ListToArray

 Name: ASCII Type: FUNCTION
 Syntax: ret = ASCII(c$)

 Returns the ASCII value of a character (or the first character of a
 string) very much like VB's ASC will but without fear of error when
 called with an uninitialized string.

 Copyright (C) InfoSoft, 1991, 1992
 3

 Name: BitChkInt Type: FUNCTION
 Syntax: result = BitChkInt%(ByVal value%, ByVal BitNo%)

 Tests a specific bit in a passed 16-bit integer value. If the bit is
 set, the return is non-zero; if not, the return is zero. These Bit?????
 functions can be handy in creating compact data fields. For example, an
 integer is more than adequate to store the days of the week which an
 employee worked. See also BitClrInt, BitSetInt and BitChkLng.
 Example:
 ' Bit # 0 1 2 3 4 5 6 7 8....
 ' Day Mon Tue Wed Thr Fri Sat Sun

 IF BitChkInt(WorkField, 4) THEN
 PRINT "Employee worked Wednesday!"
 End if

 Name: BitClrInt Type: FUNCTION
 Syntax: result = BitClrInt%(ByVal value%, ByVal BitNo%)

 Clears (sets to zero) a specific bit in a passed 16-bit integer value.
 See also BitChkInt, BitSetInt and BitChkLng.

 Name: BitSetInt Type: FUNCTION
 Syntax: result = BitSetInt%(ByVal value%, ByVal BitNo%)

 Sets a specific bit in a passed 16-bit integer value. See also
 BitChkInt, BitClrInt and BitChkLng.
 Example:
 IF EmpClockedIn THEN
 WorkField = BitSetInt(WorkField, 2)
 END IF

 Name: BitChkLng Type: FUNCTION
 Syntax: result = BitChkLng%(ByVal value&, ByVal BitNo%)

 Tests a specific bit in a passed 32-bit long integer value. If the bit
 is set, the return is non-zero; if not the return is zero.
 See also BitClrLng, BitSetLng and BitChkInt.

 Name: BitClrLng Type: FUNCTION
 Syntax: result& = BitClrLng&(ByVal value&, ByVal BitNo%)

 Clears (sets to zero) a specific bit in a passed 32-bit long integer
 value. See also BitChkLng, BitSetLng and BitChkInt.

 Copyright (C) InfoSoft, 1991, 1992
 4

 Name: BitSetLng Type: FUNCTION
 Syntax: result& = BitClrLng&(ByVal value&, ByVal BitNo%)

 Sets a specific bit in a passed 32-bit integer value. See also
 BitChkLng, BitClrLng and BitChkInt.

 Name: ByteCombine Type: FUNCTION
 Syntax: Word = ByteCombine%(ByVal HiByte%, ByVal LoByte%)

 Performs a byte combine operation. Combines the byte values of the
 passed high and low values into a single word value.

 Name: ByteSplitLo Type: FUNCTION
 Syntax: LoByte = ByteSplitLo(ByVal iVal%)

 Returns byte value of the low order portion of a word (INTEGER) value.

 Name: ByteSplitHi Type: FUNCTION
 Syntax: HiByte = ByteSplitHi(ByVal iVal%)

 Returns byte value of the high order portion of a word (INTEGER) value.

 Name: ConcaveCtl Type: SUB
 Syntax: CALL ConcaveCtl(VBControl As Control, ByVal Thick)

 This is a handy and fast routine to draw lines around the specified
 control so as to give it a sunken, 3D appearance. The routine will work
 with any control, and goes to some trouble to get the effect just right.

 Since larger controls may require a thicker frame or shaded area, the
 THICK parameter allows you to specify the thickness of that shadow. In
 general, smaller controls need a thickness of 1 or 2, while the largest
 frames will only need a thickness of 5.

 Note:
 The light and dark borders attempt to replace the normal VB borders, but
 this is apparently somewhat dependant on the type of dispolay sub sytem
 and it's capabilities. The same code may replace the original borders on
 one system and simply highlite or accent them on another. This seems
 especially true of Picture controls

 The top border that VB draws for frames is slightly inside the actual
 frame-owned area to allow for the text title. Since eliminating the
 title will not eliminate the problem, we adjust where frame shading is,
 to locate it outside the VB frame like the Picture control.

 Copyright (C) InfoSoft, 1991, 1992
 5

 Name ConcaveFrm Type: SUB
 Syntax: CALL ConcaveFrm(Frm As Form, ByVal Thick)

 Like ConCaveCtl this adds a 3d sunken, concave effect, but to a Form.
 The amount of shading required by a Form can be much more than a control
 due to the size, usually a thickness of 5 is sufficient.

 Name: ConvexCtl Type: SUB
 Syntax: CALL ConvexCtl(VBControl As Control, ByVal Thick)

 This handy and fast routine draws lines around the specified control so
 as to give it a raised, 3D appearance. The routine will work with any
 control, and goes to some trouble to get the effect just right.

 Since larger controls may require a thicker frame or shaded area, the
 THICK parameter allows you to specify the thickness of that shadow. In
 general, smaller controls need a thickness of 1 or 2, while the largest
 frames will only need a thickness of 5. Very, very effective images can
 be produced using Convex Frames and Forms with Concave controls.

 Note: The light and dark borders attempt to replace the normal VB
 borders, but this is apparently somewhat dependant on the type of
 dispolay sub sytem and it's capabilities. The same code may replace the
 original borders on one system and simply highlite or accent them on
 another. This seems especially true of Picture controls

 The top border that VB draws for frames is slightly inside the actual
 frame-owned area to allow for the text title. Since eliminating the

 title will not eliminate the problem, we adjust where frame shading is,
 to locate it outside the VB frame like the Picture control.

 Name ConvexFrm Type: SUB
 Syntax: CALL ConvexFrm(Frm As Form, ByVal Thick)

 Like ConvexCtl this adds a 3D raised, convex effect to a Form. The
 amount of shading required for a Form is usually more than needed on a
 control due to the size, usually a thickness of 5.

 Name: DayOfYr Type: FUNCTION
 Syntax: DaySoFar = DayOfYr%()

 This simply returns the day of year as an integer. It is accurate for
 dates of 01-01-1980 to 02-28-2???. This is a FUNCTION that works off the
 current system date, returning the day count in the FUNCTION name.
 Example:
 DECLARE FUNCTION DayOfYr%
 ..
 ..
 TodayCount = DayOfYr

 Copyright (C) InfoSoft, 1991, 1992
 6

 Name: DeciBin Type: FUNCTION
 Syntax: bin$ = DeciBin$(ByVal value%)

 Returns a 16 character string representation of the passed value. This
 is like BASIC's HEX$ except it returns a string of 0's and 1's.
 Example:
 Bin$ = DeciBin$(2) ' returns "0000000000000010"

 Name: DOSDate Type: FUNCTION
 Syntax: DOW = DOSDate(mo, day, yr)

 Return the current system date information as well as the current day
 of week.

 Name: DOSInt Type: FUNCTION
 Syntax: CALL DOSInt(Regs AS CPURegs)

 One of the things missing in Visual BASIC is access to standard DOS

 interrupt calls. DOSInt allows you to continue such direct DOS calls.
 The structure CPURegs is defined in WGLIB.BAS (the declarations list) as
 follows:
 Type CPURegs
 AXReg As Integer
 BXReg As Integer
 CXReg As Integer
 DXReg As Integer

 SIReg As Integer
 DIReg As Integer
 ESReg As Integer
 DSReg As Integer
 Flags As Integer
 End Type

 Upon entry set the registers to their desired values, when invoked DOSInt
 will call Int 21h (and Int 21h only!), and return the post interrupt
 register contents.

 Note: This is a _very_ advanced routine and you should have a very good
 understanding of DOS, the WIN API and the VB API before tinkering with
 it. Any damage resulting from the use or misuse of this routine is soley
 that of the user.

 Copyright (C) InfoSoft, 1991, 1992
 7

 Name: DOSTime Type: FUNCTION
 Syntax: ret = DOSTime(hrs, mins, secs)

 Rather than tearing apart BASIC's TIME$ with MID$ to determine the
 current hour, minute, second, DOSTime allows instant access to these
 items in integer format with no string garbage generated.

 Name: DosVer Type: FUNCTION
 Syntax: OEM = DosVer%(Major%, Minor%)

 Returns the DOS Version the system is running under as well as the OEM
 number, if any) - this is the DOS supplier for example, IBM's PC-DOS
 will return 00 as the OEM number, DEC as 16h etc. The Major and minor
 versions will return what function 30h returns correct regardless of the

 OEM. Note that this function respects SETVER included with DOS 5.00; see
 DosVerTrue for the true DOS version.

 Name: DosVerTrue Type: FUNCTION
 Syntax: retc = DOSVerTrue(Ver%, Rev%, HiLo%)

 If DOS 5.00 is installed, this will return the true DOS version whether
 SETVER is installed or not. The true DOS version is returned as a whole
 number in Ver (DOS 5.00 will be returned as 500). Rev indicates any
 revison codes returned, and HiLo indicates whether DOS is loaded High or
 Low.

 Name: DrvFree Type: FUNCTION
 Syntax: FreeBytes& = DrvFree&(ByVal Drv%)

 Returns the total free space in bytes on the specified drive. Input
 parameter is drive number to poll: 1= A:, 2=B: etc; 0 = default.
 Example:
 a=0 ' read default drive
 FreeSpace& = DrvFree(a)
 See also DrvSiz

 Name: DrvGet Type: FUNCTION
 Syntax: drv = DrvGet

 This gets the default disk drive. It returns the ASCII code of the
 letter to avoid the confusion of drive numbering. Converting to a
 character is simple with BASIC's CHR$ function.

 Copyright (C) InfoSoft, 1991, 1992
 8

 Name: DrvSpace Type: FUNCTION
 Syntax: TotalBytes& = DrvSpace&(ByVal Drv%)

 Returns the total bytes (used and free) on the specified drive. Input
 parameter is drive number to poll: 1= A:, 2=B: etc; 0 = default.

 Example:
 a=0 ' read default drive

 TotalBytes& = DrvSpace(a)
 See also DrvFree

 Name: DrvSet Type: FUNCTION
 Syntax: ret = SetDrv(ByVal drv$)

 Sets or resets the default drive. To set the drive, simply pass it the
 letter, upper or lower case, to log into. This removes the ambiguity of
 drive numbers (Hmm, is drive 1 A: or B: in this case...). SetDrv returns
 nothing and if passed a bad parameter, DOS simply rejects it leaving the
 default drive unchanged. See also DrvGet. Example:
 errc = DrvSet("d")

 Name: DrvStat Type: SUB
 Syntax: CALL DrvStat(ByVal Drv%, SecClus, ClusAvail%, SecBytes%,_
 TotClus%)

 Returns key statistics on the drive requested. On entry the first
 parameter is the drive number to poll: 1= A:, 2=B: etc;
 0 = default.

 On return, the parameters representing Sectors per Clusters, Clusters
 Available, Bytes per Sector and Tot Clusters on the drive respectively
 are filled in with the drive's values.

 Name: EmbossFrm Type: SUB
 Syntax: CALL EmBossFrm(Frm As Form, ByVal Top% ByVal Left&_
 ByVal Bottom, ByVal Right%, ByVal Thk%)

 Draws a very petite 3D frame like structure on a form.

 Even though it is very effective, there are one or two things about VB
 frame controls with our ConcaveCtl or ConvexCtl shading that are aesthet-
 ically out of tune. One is that the top of the VB control is not where
 the top line is drawn, and you cannot hide this with a frame style
 parameter. Another is that on some frames and forms even a petite
 shading effect is a little overwhelming when added to the standard frame.

 EmbossFrm will draw a 3D frame-like structure on the given form at the
 passed Twip coordinates. The embossed effect makes the framed area
 appear to stand out (convex) from the form. We find that a thickness of
 1 or 2 is perfect, but that is up to you.

 Copyright (C) InfoSoft, 1991, 1992
 9

 Notes: A) This is NOT a custom control, it is simply an effect to

 highlight or draw attention to portions of the frame, or controls located
 inside the embossed area.

 B) The passed coordinates MUST be in twips format, the default ScaleMode
 for VB forms.

 C) The procedure will NOT obliterate or draw over existing controls.
 This is a true asset as placing a LABEL control in the path of the top
 line provides for the appearance of a very effective 3D frame.

 See also: EmpressFrm

 Name: EmpressFrm Type SUB
 Syntax: CALL EmpressFrm(Frm As Form, ByVal Top% ByVal Left&_
 ByVal Bottom, ByVal Right%, ByVal Thk%)

 Draws a very petite 3D frame like structure on a form.

 While there is really no such word as 'empress', it evokes images of the
 inverse of emboss and places EmpressFrm directly after EmbossFrm in alpha
 listings.

 EmpressFrm will draw a 3D frame-like structure on the given form at the
 passed Twip coordinates. The effect makes the framed area appear to be
 pressed into (concave) to the form. We find that a thickness of 1 or 2
 is perfect, but that is up to you.

 Notes: A) This is NOT a custom control, it is simply an effect to
 highlight or draw attention to portions of the frame, or controls located
 inside the empressed area.

 B) The passed coordinates MUST be in twips format, the default ScaleMode
 for VB forms.

 C) The procedure will NOT obliterate or draw over existing controls.
 This is a true asset as placing a LABEL control in the path of the top
 line provides for the appearance of a very effective 3D frame.

 See also: EmbossFrm

 Copyright (C) InfoSoft, 1991, 1992

 10

 Name: EqInfo Type: SUB
 Syntax: CALL EqInfo(Ser, Par, Floppy)

 Returns some basic hardware configuration information as contained in low
 memory. Should a CMOS system encounter an error during the POST (Power
 on Self Test) this information could be incomplete. See also:
 FloppyType.

 Parameters
 Ser - Returns number of serial ports installed
 Par - Returns number of parallel ports installed
 Floppy- Returns 0,1,2 as number of physical floppies
 installed

 Name: FAttrGet / FAttrSet Type: FUNCTION
 Syntax: errc = FAttrGet%(ByVal fil$, fattr%)
 Syntax: errc = FAttrSet%(ByVal fil$, ByVal fattr%)

 These allow access to get or set the file attributes for a given file.
 The file need not be open as the operations are performed on file names.
 File attributes are as follows:
 00 - Normal 04 - System
 01 - Read Only 32 - Archive
 02 - Hidden

 The archive bit is typically used by back up programs to determine if a
 file has been backed up since the last write process. To combine
 attributes, just add the values, ie: Read Only - Hidden would be 3
 because 1+2=3.

 The function returns an error code indicating any error that DOS
 encountered trying to execute the function. The most likely error would
 be error code 6 - File Not Found. Note that when using FAttrSet, DOS
 will not allow you to set or change volume labels or directories.
 Error Codes:
 -1 = Invlid File attribute 3 = Path not found
 2 = File not found 5 = Access denied

 Example:
 DECLARE FUNCTION FAttrGet%(ByVal fil$, ByVal attrib%)
 .
 .
 fil$ = "myfil.txt"
 failure = FAttrGet(fil$, attrib)
 IF failure THEN MsgBox("Sorry, cannot find "+fil$, 48, "Error!")

 Copyright (C) InfoSoft, 1991, 1992
 11

 Name: FClose Type: FUNCTION
 Syntax: errc = FClose(handle%)

 FClose performs the opposite of FOpen, that is, to close out a file
 handle. FClose does some positive error checking to make sure that you
 do not attempt to close one of the standard DOS file handles (like the
 keyboard, monitor etc) and will return a error code of 6 - Invalid File
 handle. Note that FClose will zero out the variable thus preventing you
 from accidentally attempting firther file operations on a handle that has
 been closed!

 See also FOpen FUnique, FCreat, FSetPtr, and DOS File Functions.
 Example:
 DECLARE FUNCTION FClose%(ByVal fhandle%)
 errc=FOpen(Fil$, FHandle)
 . ' FHandle == 6
 .
 result = FClose(FHandle)
 . ' now FHandle = 0
 IF result THEN GOSUB ErrorControl

 Name: FCopy Type: FUNCTION
 Syntax: errc = FCopy(ByVal source$, ByVal dest$)

 This function copies a disk file using a buffer supplied by the main
 program, and performs about as fast as the DOS COPY command. You pass it
 a source and destination string (paths / drives are ok) representing
 filenames.

 The FUNCTION returns a variety of error conditions:
 2 = File Not Found
 3 = Path not Found
 4 = No Handle ("Too Many Files")
 5 = Access Denied

 Example:
 DECLARE FUNCTION FCopy%(ByVal source$, ByVal dest$)
 ..
 result = fcopy("WGLIB.DLL","\WINDOWS\SYSTEM\WGLIB.DLL", SPACE$(4096))

 IF result THEN
 MsgBox("Oops! Error - Check parameters!", 48, "FCopy Error")

 END IF

 Name: FCount Type: FUNCTION
 Syntax: NumFiles = FCount(ByVal fil$)

 This is can be an indespensible tool - it quickly returns a count of the
 number of files matching the given mask. This is extremely useful in
 determining how large an array should prior to a directory related
 function. If an invalid path or drive is included in the mask$, no
 matching files will be found.

 Copyright (C) InfoSoft, 1991, 1992
 12

 Name: FCreat Type: FUNCTION
 Syntax: errc = FCreat(ByVal fil$, FHandle%)

 FCreat is similar to FOpen except that instead of opening an existing
 file, we are CREATING a NEW file. If the file already exists it is
 trunacted as if opened FOR OUTPUT in BASIC. As with FOPEN, and all the
 DOS File Functions, error codes returned in the BASIC FUNCTION format and
 are:
 3 Path not found
 4 No handle available ("Too many files")
 5 Access denied (returned when attempting to FCreat a file that
 is already open - use FOpen in this case).
 Example:
 DECLARE FUNCTION FCreat%(ByVal fil$, FHandle%)
 .
 .
 fil$="mainprg.sys": attrib=0
 IF fcreat(fil$, fhandle)=0 THEN
 MsgBox("New file, " +fil$+ " successfully created!", 48, "Info")
 ELSE
 GOSUB WhatsGoingOn
 END IF

 Name: FDateGet/FDateSet Type: FUNCTION
 Syntax: errc = FDateGet(ByVal fil$, mo%, day%, yr%)
 Syntax: errc = FDateSet(ByVal fil$, ByVal mo%, ByVal day%, ByVal_
 yr%)

 These allow you to SET or GET the date for a file. The file need not be
 open since the function(s) are accessed by file name. Because of this,
 it would make sense to use FExist to see that the file is there. The
 year parameter may be either 2 or 4 digits (ie 1989 or 89). Eg:
 OPEN "foo.bar" FOR RANDOM AS #1

 handle = FILEATTR(1,2)
 errc = FDateSet(handle, 1, 1, 80) ' set date to 1/1/1980

 Name: FDelete Type: FUNCTION
 Syntax: errc = FDelete(ByVal fil$)

 Simply deletes the file indicated by fil$ from the disk. The file should
 NOT be open. This uses the DOS function UNLINK to simply remove the
 first character so it may be UNDeleted with any of a number of low level
 Disk tools. Example:
 errc = FDelete("foo.bar")

 Copyright (C) InfoSoft, 1991, 1992
 13

 Name: FEOF Type: FUNCTION
 Syntax: errc = FEOF(ByVal FHandle)

 Sets the file pointer to the end of a file opened via FOPEN. You may want
 to actually set the pointer to ONE BYTE less than the end of
 text files to be sure that subsequent FWRITE funtions overwrite any hard
 EOF marker (ASCII 26) left by many text editors. In this case use a
 combination of FSIZEh and FSETPTR.

 Additionally, FEOF checks for invalid handles as well as the 4 standard
 DOS handles and aborts to return an error code of 6 - Invalid handle.
 Using FOPEN and then FEOF is the equivalent of opening a file in APPEND
 mode using BASIC's intrinsic file functions. See also:
 FSetPtr.
 Example:
 DECLARE FUNCTION FEOF%(ByVal fhandle%)
 .
 IF FOpen("longtext.fil", fhandle) THEN
 GOSUB StartNewFile
 ELSE
 j= feof(fhandle)
 IF j THEN GOSUB WeirdError
 GOTO AppendToText
 END IF

 Name: FExists Type: FUNCTION
 Syntax: ExistCode = FExists(ByVal fil$)

 This routine sets the return code (non zero) if the given file exists and
 no path or other error is encountered. See also FileDNE.
 Example:
 DECLARE FUNCTION FExists%(ByVal fil$)
 ..
 fil$ = "foo.bar"
 IF FExists(fil$) THEN
 ret = MsgBox(fil$ + " already exists! Overwrite?",48, "Query")
 END IF

 Name: FFlush Type: FUNCTION
 Syntax: errc = FFlush(ByVal FHandle)

 This flushes the DOS file buffers forcing any buffered data to disk. If
 you are using the WGLIB DOS file functions, (FOPEN, FWriteStr, FWriteAry
 etc), FFlush will dump any buffered data to disk much faster than closing
 and then reopening the file will. FFlush will NOT dump the buffer for
 files opened using VB functions - VB does some significant buffering of
 its own which does not respond to FFlush. Pass FFlush the handle
 associated with the file, any return indicates an error code the same as
 the other DOS file functions. Example:
 errc = FFlush(fhandle)

 Copyright (C) InfoSoft, 1991, 1992
 14

 Name: FileDNE Type: FUNCTION
 Syntax: errc = FileDNE(ByVal fil$)

 This provides the inverse logic of FExists. Instead of testing if a file
 DOES exist, it returns non zero if the file DOES NOT exist. This can be
 handy for logic or statements that work better with the non zero return.
 See also FExists. Example:

 'REM Instead of:
 IF NOT FExists(Fil$) THEN... or IF FExists(fil$) = 0 THEN...

 IF FileDNE(fil$) THEN
 ret = MsgBox("File Does Not Exist - Create?", 32 + 3, "Warning!")
 END IF

 Name: FileLoad Type: FUNCTION
 Syntax: errc = FileLoad(fil$, size&, Buffer$)

 One of the slowest operations in VB is the assignment and manipulation of
 string space, particularly string space allocation (your VB program has
 to ask 'C' to ask the WIN API to allocate memory from DOS and back down

 the chain to your program). FileLoad will quickly read a file of less
 than 64k into memory. Upon entry, fill in fil$ with the name (drive and
 path ok) of the file to read, and initialize Buffer$ to a minimum of 1
 space. When called FileLoad will reallocate Buffer$ to the required
 size, read the file into that string, and return the file's size to you
 in the size& parameter.

 Name: FloppyType Type: FUNCTION
 Syntax: retc = FloppyType(ByVal Drv)

 Returms a code indicating the type of floppy drive that the designated
 drive is (default drive = 0, 1= A: ...)

 Code Floppy Type Code Floppy
 0 Unknown type or no such drive exists
 1 360k 4 1.44 Mb
 2 1.2 MB 5 2.88 Mb

 Name: FMove Type: FUNCTION
 Syntax: errc = FMove(ByVal source$, ByVal dest$)

 This works the same as a FCopy/FDelete combination with the source file
 being deleted after the destination file is created. Any errc return
 indicates an error such as disk full, file already exists and is Read
 Only, or disk is write protected. The source and destination file name
 may be on different devices.
 Example:
 errc = FMove("foo.bar", "A:foo.bak")

 Copyright (C) InfoSoft, 1991, 1992
 15

 Name: FOpen Type: FUNCTION
 Syntax: errc = FOpen(ByVal fil$, fhandle%)

 FOpen is a standard DOS function (albeit executed thru the Windows API)
 to open a file via a file handle. The DOS function requires that an open
 mode or style be indicated, and Windows has further expectations or
 requirements, so the mode is hard coded to open the file in READ/WRITE
 mode and your process will have exclusive access to it.

 The fhandle parameter returns the file handle and FOPEN returns
 any error codes DOS or the WIN API encounter. An error can occur if the
 file is already open, file not found etc. In this case, the errorcode or
 result will indicate what happened and any fhandle number should be
 ignored.
 Example:
 DECLARE FUNCTION FOpen%(ByVal fil$, fhandle%)

 ..
 fil$="myprog.dat"
 IF fopen(fil$, fhandle) THEN
 GOSUB FileError
 ELSE
 ' fil$ is now open under the handle ID of fhandle
 END IF

 Name: FOpenW Type: FUNCTION
 Syntax: errc = FOpenW(ByVal fil$, FHandle)

 This works very much like FOpen, but if the file does not exist, the WIN
 API is set to pop up a dialog box asking the end user to insert a disk
 with that file on in drive A:. This is a less than elegant way to handle
 missing files, but can be handy in quick and dirty applications.

 Name: FReadArray/FWriteArray Type: FUNCTION
 Syntax: errc = FReadArray(SEG arry, ByVal FHandle, BYTES)
 Syntax: errc = FWriteArray(SEG arry, ByVal FHandle, BYTES)

 FReadArray reads data from a disk file directly into an array. The file
 must have a valid DOS File Handle which is accomplished either by using
 FOpen or FILEATTR on a BASIC file number. Elements indicates the number
 of BYTES to fill (remember that each elements in the array is 2 Bytes),
 upon return from the function BYTES is reset to the actual number read
 (in case EOF is encountered before all the requested bytes can be read).
 ERRC is set to indicate any DOS error encountered.

 See the complimentary function FWriteArry.
 Example:

 Copyright (C) InfoSoft, 1991, 1992
 16

 DECLARE FUNCTION FReadArry%(SEG arry%, ByVal Fhandle%, Bytes%)
 ..
 ..
 REDIM Emps(NumEmps) AS StructEMP ' size array
 ..
 fil = FREEFILE ' get next BAS file no
 OPEN "screens" FOR RANDOM AS #fil LEN=LEN(EMPs(1))
 handle = FILEATTR(fil,2)
 Bytes = LEN(Emps(1)) * NumEmps ' size of record

 errc = FreadArray(Emps(1), handle, Bytes) ' read all emps into
 ' struct

 Name:FReadByte/FWriteByte Type: FUNCTION
 Syntax: errc = FReadByte(ByVal FHandle, byte)
 Syntax: errc = FWriteByte(ByVal FHandle, byte)

 This is similar to BASIC native BINARY file I/O, allowing you to write or
 read a single byte to disk. This is not a character but a byte, or the
 ASCII value of the byte (ASC(ch$)) to be sent or read from disk.

 You must have a valid, open handle for the destination file - use FOpen
 or BASIC's FILEATTR for this. This can be considerably quicker for byte
 I/O than BASIC's BINARY method. Example read 5 bytes:
 FOR x = 1 TO 5
 errc = FReadByte(handle, byte)
 NEXT x

 Name: FReadStr/FWriteStr Type: FUNCTION
 Syntax: errc = FReadStr(ByVal Bufr$, ByVal Fhandle, CharsCnt)
 Syntax: errc = FWriteStr(ByVal Bufr$, ByVal Fhandle, CharsCnt)

 FReadStr reads data from a disk file directly into a string variable,
 FWriteStr writes that string. The file must have a valid DOS File Handle
 which is accomplished either by using FOpen or FILEATTR on a BASIC file
 number. CharCnt indicates the number of CHARACTERS or BYTES to read or
 write. Upon return from the function, CharCnt is reset to the actual
 number read (in case EOF is encountered before all the requested
 characters can be read). ERRC is set to indicate any DOS error
 encountered. Because FReadStr is in high-speed assembler, you must
 initialize the buffer or string that will hold the read data to at least
 as long as the number of characters to read or an error will occur.
 Example:
 DECLARE FUNCTION FReadStr%(ByVal Buffer$, ByVal Fhandle%, Bytes%)
 ..
 ..
 message$ = SPACE$(25)
 chars = 25
 fil = FREEFILE ' get next BAS file no
 OPEN "myprog.dat" FOR OUTPUT AS #fil
 handle = FILEATTR(fil,2)
 errc = FReadStr(Message$, handle, chars)

 Copyright (C) InfoSoft, 1991, 1992
 17

 Name: FRecGet/FRecPut Type: FUNCTION

 Syntax: errc = FRecGet(ByVal FHandle%, ByVal size%, fStr As Any)
 Syntax: errc = FRecPut(ByVal FHandle%, ByVal size%, fStr As Any)

 These perform essentially the same function as QB's GET # and PUT # by
 reading a single record from the current location of the file pointer
 represented by the handle passed. Use FsetPtr (qv) to set the file
 pointer to the desired location. These are the single record version of
 FRecGetA/FRecPutA (qv). In using these over PUT/GET, you can completely
 bypass QB's file I/O, buffering and obnoxious error routines and interpet
 the return code for errors. The biggest advantage to using these will be
 to those who are also using the multiple record I/O routines
 (FGet/PutRecA). Note that while these are setup for TYPEd file I/O, they
 will work for FIELDed files, though the hassle involved with this is
 probably not worth the effort. An error return indicates failure,
 generally an invalid handle was passed (6).

 See also FGetRecA/FSetRecA, FSetPtr.

 Name: FRecGetA/FRecPutA Type: FUNCTION
 Syntax: errc = FRecGetA(ByVal FHandle, ByVal Quan, ByVal size,_
 fStruct As Any)
 Syntax: errc = FRecPutA(ByVal FHandle%, ByVal Quan%, ByVal size%,_
 fStruct As Any)

 These perform essentially the same function as QB's GET and PUT, with the
 exciting difference that rather than single record operations, an entire
 TYPE array of records (designated by Quan) are read or written at once.
 Rather than reading (or writing) many records from within a QB FOR...NEXT
 loop, you can read as many as desired in one pass and much quicker,
 making it ideal for large database operations:

 errc = FGetRecA(handle, 128, LEN(Emp(1)), Emp(1))

 This would read 128 records from the file handle (starting at the current
 location) and place them in the TYPE array Emp beginning at subscript 1.
 The size of the (TYPE) structure is passed so that the functions can
 calculate the number of bytes to read.

 Care must be taken that the read or write (transfer) request does not
 exceed 64k (Quan recs times Size of struct) since VB does not handle huge
 arrays at this time. The only likely return code placed in errc,
 generally signals an invalid handle (6) or a SHARE violation (5).

 NOTE: Records or data are read from the file at the current DOS file
 pointer position. Use FSetPtr to locate this to the desired spot: QB's
 SEEK may not always do the equivalent on random files.
 See also FGetRecA/FSetRecA, FSetPtr.

 Copyright (C) InfoSoft, 1991, 1992

 18

 Name: FRename Type: FUNCTION
 Syntax: errc = FRename(ByVal oldf$, ByVal newf$)

 This allows you to rename a disk file. Since a simple DOS function is
 used, both the source and destination files must reside on the same
 device (you may not move the file from one drive to another with this
 function - see FMove, FReplicate or FCopy for that). Any return
 indicates an error such as an attempt to span drives. Example:
 errc = FRename("foobar.new", "foobar.old")

 Name: FRep Type: FUNCTION
 Syntax: errc = FRep(ByVal source$, ByVal dest$)

 This works very similarly to FCopy, except the file date and time are
 preserved on the destination file. You supply the buffer by simply
 passing a string or temporary variable. Any errc return indicates an
 error such as disk full, file already exists and is Read Only, or disk is
 write protected. Eg:
 errc = FRep("foo.bar", "A:foo.bak")

 Name: FSetPtr Type: FUNCTION
 Syntax: errc = FSetPtr&(ByVal Fhandle%, ByVal RecNo&,_
 ByVal RecSize%)

 Moves the DOS file pointer to a specified location in a file (usually to
 a specific record in a random file) opened with a handle. Note that
 RecNo is a LONG INTEGER so that very large files can be addressed. This
 function is used with FGetRec, FPutRec, FGetRecA and FPutRecA (qv) to
 position the DOS file pointer to a specific location. Note that this
 acts directly on the DOS file pointer and therefore acts differently than
 BASIC's native SEEK would (due to significant file buffering performed by
 VB iteself), and returns a long integer indicating the byte position of
 the DOS file pointer. Note that the use of this function is a
 prerequisite to calls to FGetRec, FPutRec, FGetRecA and FPutRecA.

 See also FEOF, FRecGet, FRecPut, FRecGetA, FRecPutA.
 Example:
 TYPE struct
 RecNo AS INTEGER
 AName AS STRING * 25
 BStuff AS STRING * 15
 FooBar$ AS STRING * 15
 END TYPE
 DIM RecThing AS STRUCT

 RSize = LEN(RecThing) ' calc once rather than many LEN calls

 OPEN datfil$ for RANDOM as #f LEN = RSize
 Fhandle = FILEATTR(f, 2) ' Ask BASIC for handle of file
 ..
 ..
 fpos& = FSetPtr&(FHandle, RecNo&, RSize) ' seek to RecNo

 Copyright (C) InfoSoft, 1991, 1992
 19

 Name: FSizeH Type: FUNCTION
 Syntax: SizeOfFile& = FSize&(ByVal FHandle%)

 Passed a valid file handle from FOpen or FILEATTR, this will return a
 long integer representing the size of the file in bytes. See also:
 FSizeN

 Name: FSizeN Type: FUNCTION
 Syntax: SizeOfFile& = FSize&(ByVal Fil$)

 Passed a string representing a valid file, this will return a long
 integer representing the size of the file in bytes. See also: FSizeH

 Name: FTimeGet/FTimeSet Type: FUNCTION
 Syntax: errc = FTimeGet(ByVal fil$, hr, min, sec)
 Syntax: errc = FTimeSet(ByVal fil$, ByVal hr, ByVal min, ByVal sec)

 Like the names imply, these allow you to set or get the timestamp of a
 file or the last time it's directory entry was updated. You pass it the
 name of the file and the only likely error code is that of File Not
 Found. Example:
 errc = FTimeSet(Fil$, 10, 10, 10) ' set time to "10:10:10"

 Name: FUnique Type: FUNCTION
 Syntax: errc = FUnique(ByVal fil$, ByVal attr, Fhandle)

 This DOS disk file function creates a file with a unique name, which
 makes it ideal for scatch data files. Rather than HOPING that
 "mydat.@@@" is a unique filename, FUnique makes SURE that a file is in
 fact unique. DOS will create such a file in the specified directory and
 open it with read write access with the attributes you specify and return
 to you a valid handle for use - or an error code.

 FUnique will also return to you the actual file name that is open for

 access, but to do so requires very specific handling. First, populate a
 string variable with the path where you wish the temporary or scratch
 file to exist. Terminate this string with a NULL (CHR$(0)), then tack on
 a minimum of 12 spaces. DOS will overwrite the null and most of the
 spaces with the actual file name.

 NOTE: The unique file is OPEN with a handle! Subsequent file access
 should be thru WGLib file functions, or close the file handle and reopen
 it using the name and Visual BASIC.
 Example:

 Copyright (C) InfoSoft, 1991, 1992
 20

 DECLARE FUNCTION FUnique%(ByVal path$, ByVal attrib%, fhandle%)
 ..
 ..
 tempfil$ = "C:\BIN\" + CHR$(0) + SPACE$(13)
 IF FUnique(fil$, 0, fhandle) THEN ' path, normal file
 GOSUB InvalidInfo
 ELSE
 errc = FClose(Fhandle)
 OPEN TempFil$ For Output as #1
 END IF

 Name: GetWGlibVer Type: FUNCTION
 Syntax: WGVer = GetWGlibVer()

 WINDOWS programs are unique in that called routines such as those in
 WGLib remain external to the program even at run time AND the library
 name is referenced in your VB code (in the DECLARES).

 To preclude any possible confusion, this routine will a code indicating
 the WGLib version. This is returned as a whole number, meaning 1.01 will
 be returned as 101.

 Name: INCR / DECR Type: FUNCTION
 Syntax: result = INCR(ByVal x, ByVal y)
 Syntax: result = DECR(ByVal x, ByVal y)

 Provides an easy method of incrementing or decrementing a VB variable by
 a given amount. The function return is the result of the operation.
 Example:
 DECLARE FUNCTION Incr%(ByVal x%, ByVal y%)
 DECLARE FUNCTION Decr%(ByVal x%, ByVal y%)
 ..
 i = INCR i, 5 ' same as i=i+5

 j = DECR j, q ' same as j=j+q

 Name: INSTRI Type: FUNCTION
 Syntax: result = INSTRI(ByVal Start, ByVal FindIn$, ByVal LookFor$)

 This function is identical to the native INSTR except that it is case
 insensitive. That is, INSTRI will return an integer pointing to the
 first occurrence of either "CD" or "cd" in "ABCDEF" or "abcdef". Like
 INSTR, INSTRI allows the use of a starting point to begin the search
 withing the string to BE searched, unlike BASIC, this is not optional.
 Like BASIC, the return is a relative pointer from the starting point.
 Further, the routine will recognize "?" in the search string as a
 match-all wild card. Example:
 DECLARE FUNCTION INSTRI%(ByVal start%, ByVal a$, ByVal b$)
 ..
 j = INSTRI(1, "AbCdEFGhiJkL", "cDe?") ' returns 3

 Copyright (C) InfoSoft, 1991, 1992
 21

 Name(s): IsCharxx Type: FUNCTION (s)
 Syntax: status = IsChar????(ByVal c$)
 status = IsStr?????(s$)

 The 'izzy' collection provides for assembler level replication of the
 highly useful IsChar???? macros found in 'C'. Where the 'C' macros work
 only on a single character, WGLIB provides routines that work on
 characters (IsChar???) or whole strings (IsStr???). When using a string
 however, a single non matching character forces a false return. Example:

 IF IsCharAlph("The quick brown fox is really a lazy dog.") THEN
 Text1.Text = "All Alpha chars!"
 ELSE
 Text1.Text= "Non alpha chars in string!"
 END IF

 In this example, the return is FALSE, the string is NOT all alpha
 characters - the spaces and period in the string cause a zero (FALSE)
 return. All the IZZY functions return a 0 or -1 based on the function.
 The IsChar functions are:

 IsCharAlph - Test if the character is between A-Z or a-z.

 IsCharAlNum - Test for characters A-Z, a-z and 0-9.

 IsCharUppr - Tests to see if the character is Upper case. Very
 useful when you want to preserve the case of some
 input or want to avoid generating string garbage in
 reassigning UCASE(x$) to a new, temporary variable.

 IsLowr - Similar to IsUpper - tests for lower case.

 The IsString functions are:

 IsStrAlph - Checks an entire string for alpha components.

 IsStrAlNum - Checks that all character entries in a string are
 Alpha-Numeric.

 IsStrText - Similar to AlNum but allows the inclusion of spaces
 and punctuation (ASCII 32 to 127).

 Copyright (C) InfoSoft, 1991, 1992
 22

 Name: Julian Type: FUNCTION
 Syntax: JDay& = Julian&(ByVal month, ByVal day, ByVal year)

 Returns the TRUE julian date for the passed month/day/year. What many
 dating schemes call "julian" is merely an ordinal day code or an ordinal
 code serialized with the year such as 90102 which is supposed to indicate
 the 102nd day of 1990. Even worse, there are some that return a SERIAL
 date by calculating the number of days since 1/1/1. These are invariably
 wrong since they do not take into account that leap years are NOT every 4
 years (years such as 1700, 1900 and and 2100 are not leap years); also
 they tend to ignore that there were 11 days supressed in 1582 (you went
 to bed on Oct 4, you woke up on Oct 15).

 A modified form of serial dating that is widely used is to calculate the
 number of days elapsed since Jan 1, 1900. This modified julian date
 method is used by LOTUS 1-2-3. This is generally used because invoicing
 needs and such usually need not extend back to before 1900 and returns a
 smaller number (on the order of 32,000).

 A _TRUE_ julian date such as those returned by Julian&, represent the
 number of days passed since Jan 1, 4713 BC. Note that Julian& returns a
 long integer representing this Julian date. Because Julian& will not
 accept dates before Jan 1, 0001 AD, the smallest number returned is

 1721424. That is, Julian does not convert BC dates.

 Such a dating method allows for significant, long range date calc-
 ulations, such as getting the date for a day x days in the future or x
 days ago. Note that in passing the year to Julian, nothing is assumed.
 That is, yr = 89 DOES NOT equate to 1989 but 89 AD.

 See JulianCvt for examples.

 Name: JulianCvt Type: FUNCTION
 Syntax: errc = JulianCvt(Ser&, mo, day, yr)

 Reconstitutes a long integer formulated by Julian (qv) into a valid date.
 The long integer must be a _TRUE_ julian date not an ordinal or
 serialized date from an arbitrary point. The use of Date, Julian,
 JualianCvt and/or DFrmat allow for extensive date caluclations. The
 function return is non zero for unsupported dates (such as any BC date).
 Example:

 REM 1. Find the maturity date for a 90 Certificate of
 ' Deposit purchased 4/5/1989

 MatDate& = Julian(4, 5, 1989) ' get julian date for 4/5/1989
 CALL JulianCvt(MatDate& + 90, m, d, y) ' convert it, add 90

 PRINT USING " CD matures in 90 days on ##_/##_/#### ";m;d;y
 CALL DFrmat(m, d, y, Mat$)
 PRINT "That day is ";Mat$

 Copyright (C) InfoSoft, 1991, 1992
 23

 REM 2. Calculate difference in 2 dates

 CALL Date(tm, td, ty) ' get today's date
 Today& = Julian(td, tm, ty) ' julian date for today

 DueDate& = Julian(dd, dm, dy) ' julian date for a past date

 Diff& = ABS(Today& - DueDate&) ' get difference

 IF DueDate& > Today& THEN
 Text1.Text = "Library book is not due for "; Diff& ; " more days."
 ELSE
 Text1.Text = "Library Book is "+ Diff& + " days overdue!"
 OverDue.Text = "Pay up $"+ (Diff& * LateChg)
 END IF

 Name: KBCapsOn / KBCapsOff Type: SUB
 Syntax: CALL CapsOn
 Syntax: CALL CapsOff

 Neither of these take an argument or pass a parameter. They simply
 engage (CapsOn) or disengage (CapsOff) the Caps Lock state via the WIN
 API.

 Name: KBInsOff / KBInsOn Type: SUB
 Syntax: CALL KBInsOff
 Syntax: CALL KBInsOn

 This subroutine simply puts the keyboard into INSERT ON state (KBInsOn)
 or turns the insert toggle off (KBInsOff). Example:

 CALL KBInsOn

 Name: KBNumsOn / KBNumsOff Type: SUB(s)
 Syntax: CALL KBNumsOn
 Syntax: CALL KBNumsOff

 Sets the Keyboard Num Lock key to on (NumsON) or off (NumsOff).

 Name: KBScrLkOn / KBScrLkOff Type: SUB
 Syntax: CALL KBScrLkOn
 Syntax: CALL KBScrLkOff

 Toggles the scroll lock key on or off. If the keyboard is equipped with
 LED's, they are also toggled to the appropriate state.

 Copyright (C) InfoSoft, 1991, 1992
 24

 Name: KeyLock? Type: FUNCTION
 Syntax: status = KeyLockC()
 Syntax: status = KeyLockN()
 Syntax: status = KeyLockS()
 Syntax: status = KeyLockI()

 This queries the WIN API to see which keyboard locks are engaged. One

 routine is provided each for Caps, Nums, Scroll and Insert keys and all
 return zero for NOT engaged, non zero for engaged:

 KeyLockC - Check Caps Lock KeyLockS - Check Scroll Lock
 KeyLockN - Check Num Lock KeyLockI - Check Insert key

 Example:
 IF KeyLockC THEN Text1.text= "Caps Lock is ON!"

 Name: LCount Type: FUNCTION
 Syntax: NumLines = LCount(ByVal Fil$)

 This is a handy routine that quickly scans an existing disk text file for
 ASCII 13 (carriage return) and counts them. This is handy for sequential
 file I/O operations where you might want to inform the user how long
 processing will take or to figure the size an array needs to be to hold
 the file contents.

 LCOUNT is a function that requires only a valid file name. Unlike the
 QB4.5 version of GLib, you need not specify a scratch buffer - WGLib
 creates a temporary internal buffer.

 Note: LCount starts counting CR's at the current file position so you can
 count only a portion of the file by using SEEK or FPtrSet to set the file
 pointer to other than the start of the file. After the operation, LCount
 closes the file. If you need access to it, simply re open it with FOPen
 or VB's OPEN statement. LCount is incredibly fast: a 50K test file takes
 only .5 seconds to count on a 286 system.

 Example:
 DECLARE FUNCTION LCount%(ByVal fil$)
 ..
 ..
 fil$="GLIBDEMO.BAS" ' text, not QB quick save format!

 LineCount = LCount(fil$)
 IF LineCount > 0 THEN
 GOSUB CalcTime
 Text1.text= "File will take "; CalcResult ;" secs to process."
 ELSE
 GOSUB ErrControl
 END IF

 Copyright (C) InfoSoft, 1991, 1992
 25

 Name: LastNFirst Type: FUNCTION
 Syntax: Swapped$ = LNameF(ByVal text$)

 This data entry routine is handy for rearranging names from some other
 source to convert them to "Lastname, FirstName". It works on names of
 all types, those with middle initials, just first and middle initials and
 multiple middle names. It does not work correctly on Jrs, people who are
 the II, III or IV (ad nauseum). In this case, I'd suggest using BASIC's
 INSTR and LEFT$ to trim off the Jr or II etc and append it after the
 LNAMEF call.

 All that is required is that the name have no leading or trailing spaces.
 You can trim these spaces without either creating a new string variable
 OR altering the original as shown in the example. The return is the
 names in swapped format. Examples:

 "Mary Beth J. Sandra Brooks" => "Brooks, Mary Beth J. Sandra"
 "P. T. Barnum Bailey" => "Bailey, P. T. Barnum"
 "Thomas Q. McFly III" => "III, Thomas Q. McFly"
 "John Public" => "Public, John"

 Example:
 DECLARE FUNCTION LNameF$(ByVal text$)
 ..
 ..
 text$="John Smith " ' MUST NOT have trailing space...

 ' Look for Jr or a sequel indicator at the end
 IF INSTR(LEN(text$) - 5,text$, "IVJrR") THEN
 GOSUB ReformatName ' hack it off, if so
 END IF

 NewName$ = LNameF$(LTRIM$(RTRIM$(text$))) ' passed trimmed copy
 PRINT text$ ' "Smith, John"

 Name: MHZ Type: FUNCTION
 Syntax: speed = MHZ()

 This returns an approximation of the speed the system is operating at.
 This return is the result of a very quick benchmark. It is an
 "approximate" Mhz because it will be off a little depending on the
 number of wait states of the machine, and some faster PC/8088 clones
 return falsely high numbers.

 MHZ returns the speed factor as a whole number: that is a return of 935
 means an effective MHZ speed of 9.35. Divide the return by 100. It is
 advised that you cross reference the speed with the chip: if MHZ returns
 1400 but CPUINFO indicates a 8088 machine, you know the speed is wrong
 and that the PC is more likely 8 to 10 MHz.

 Copyright (C) InfoSoft, 1991, 1992

 26

 Name: MaxI, MinI Type: FUNCTION
 Syntax: ret = MaxI(ByVal a%, ByVal b%)
 ret = MinI(ByVal a%, ByVal b%)

 Returns the larger (MaxI) or smaller (MinI) of 2 passed Integers. See
 also MaxIArry/MinIArry.

 Name: MaxL, MinL Type: FUNCTION
 Syntax: ret = MaxL(ByVal a%, ByVal b%)
 ret = MinL(ByVal a%, ByVal b%)

 Returns the larger (MaxL) or smaller (MinL) of 2 passed Long Integers.
 See also MaxLArry/MinLArry.

 Name: MaxIArry, MinIArry Type: FUNCTION
 Syntax: ret = MaxIArry(Arry%(), ByVal NumEls)
 ret = MinIArry(Arry%(), ByVal NumEls)

 Scans an entire integer array from starting with the element passed to
 find and return the largest (MaxIArry) integer foundor the smallest
 (MinIArry). The second parameter indicates the number of elements to
 search. Example:
 REDIM ProgDat%(1000)
 ..
 ..
 ' scan for largest int in the elements 250 - 750 elements
 smallest = MinIArry(ProgDat(250), 750)

 Name: MaxLArry, MinLArry Type: FUNCTION
 Syntax: ret = MaxLArry(Arry%(), ByVal NumEls)
 ret = MinLArry(Arry%(), ByVal NumEls)

 Scans an entire Long array from starting with the element passed to find
 and return the largest (MaxLArry) integer foundor the smallest
 (MinLArry). The second parameter indicates the number of elements to
 search. Example - see MinIArry, MaxIArry.

 Name: MemCompA Type: FUNCTION
 Syntax: offset = MemCompA(Src(beg), Dst(beg), ByVal words%)

 Very quickly compares 2 arrays (or two sections of the same array) and
 returns the first offset where the 2 arrays do not match. You will find
 that the declaration file WGLIB.BAS contains 2 declarations for this

 routine. The first allows for fast integer array compares, the second
 allows for the same compares on any array (even user defined, TYPE
 structures). Note that the WORDS parameter designates how many items to
 compare by indicating the number of words (16 bit integers) to compare.
 Be sure to use the proper multiple for Currency, doubles etc!

 Copyright (C) InfoSoft, 1991, 1992
 27

 Name: NybbleCombine Type: FUNCTION
 Syntax: Byte = NybbleCombine(ByVal HiNybble, ByVal LoNybble)

 This combines 2 values representing the high and low nybbles into a
 single byte (half an integer). NybbleSplitLo and NybbleSplitHi perform
 the complementary operation by splitting the value of a byte into
 separate low and high nybbles.

 Name: NybbleSplitLo / Hi Tyep: FUNCTION
 Syntax: Nibble = NybbleSplitLo(ByVal byte%)
 Nibble = NybbleSplitHi(ByVal byte%)

 These nybble split operations return either the low (NybbleSplitLo) or
 high (NybbleSplitHi) portions of a byte. When used with NybbleCombine,
 can be used to combine record info in database operations.

 Name: ParseFileSpec Type: FUNCTION
 Syntax: errc = ParseFileSpec(ByVal raw$, FileInfo As Any)

 Given a legal filename, this will parse it into a definite TYPE structure
 of it's component parts. The format of the structure is as follows:
 TYPE struct
 Drv AS STRING * 2
 Path AS STRING * 64
 Fil AS STRING * 8
 Ext AS STRING * 3
 END TYPE
 DIM FInfo AS struct

 Of course, while you can use any names you wish, the sizes must remain as
 shown. The dot separating Fil and Ext is omitted, but path backslashes
 and the drive colon are preserved. If ParseFileSpec finds what it
 perceives to be an invalid character or size in the passed raw file
 string, it will do what it can and return an error code of -1.

 Name: PCase Type: Function
 Syntax: Prop$ = PCase$(ByVal p$)

 Converts a passed string to 'proper case'. That is, "bob smith" is
 returned as "Bob Smith". Prior to calling PCASE convert the string to
 lower case and check that the string to convert is not a null string:
 x$ = "TIMOTHY FOOBAR"
 x$ = LCASE$(x$)
 IF LEN(x$) THEN p$ = PCase$(x$) ' or p$ = PCase$(LCASE$(x$))

 Copyright (C) InfoSoft, 1991, 1992
 28

 Name: ReverseStr Type: Function
 Syntax: BackWard$ = ReverseStr(ByVal s$)

 Reverses the character sequence in a string very quickly. When used in
 conjunction with XLATE, that can be a failry good encryption system.
 Example:
 x$ = "PassWord"
 PW$ = RevStr(x$) ' returns as "droWssaP"

 Name: RINSTR Type: FUNCTION
 Syntax: position = RINSTR(ByVal test$, ByVal ch$)

 Returns the LAST occurrence of a character in a string. This works
 conversely to BASIC's INSTR, which returns the first occurrence, and is
 faster and much more code efficient than a loop to keep testing INSTR
 until the end of the string is reached. The character location however
 is still returned from the left. Note: RINSTR works only on character
 seeks, not on sub strings like INSTR does. That is, in the case of

 j = RINSTR("ABCDEFG","A@B")

 RINSTR will only seek and match on "A", not "A@B". Multiple passes thru
 RINSTR, however seeking each successive character in a sub string could
 be accomplished. Example:
 DECLARE FUNCTION RINSTR%(searched$, seek$)
 ..
 ..
 test$="123456x890" : char$="x"
 l = RINSTR(test$, char$) ' returns 7

 Name: ShiftLeftI/ShiftRightI Type: FUNCTION
 Syntax: Result = ShiftLeftI(ByVal value, ByVal ShiftCount)

 Result = ShiftRightI(ByVal value, ByVal ShiftCount)

 This returns RESULT after the integer VALUE has been shifted left or
 right the number of times indicated in ShiftCount. Besides providing a
 quick multiplication and division method, it is handy for bit operations
 such as isolating the date bits in a DATE word for instance.
 See also ShiftRightL (etc) for shifting LONG integers.

 Name: ShiftLeftL/ShiftRightL Type: FUNCTION
 Syntax: Result& = ShiftLeftL(ByVal value&, ByVal ShiftCount)
 Result& = ShiftRightL(ByVal value&, ByVal ShiftCount)

 This works identical to ShiftRightI and ShiftleftI except both RESULT and
 VALUE are long integers.

 Copyright (C) InfoSoft, 1991, 1992
 29

 Name: StrCmpI Type: FUNCTION
 Syntax: result = StrCmpI(ByVal str1$, ByVal str2$)

 Retuns an integer code indicating if the strings are identical after
 performing a case insensitive compare. Results return:
 < 0: string 1 is 'less'
 = 0: strings are equivalent
 > 0: string 1 is 'greater'

 Name: SubDirCount Type: FUNCTION
 Syntax: count = SubDirCount(ByVal mask$)

 Count the number of subdirectories matching a given mask. This counts
 the number of files with the directory attribute in the default
 directory. Note that while it is unusual, a directory CAN have an
 extension. Example:

 DirCnt = SubDirCount("*.*")

 Name: SubDirCH Type: FUNCTION
 Syntax: errc = SubDirCH(ByVal SubDirName$)

 Name: SubDirMK Type: FUNCTION
 Syntax: errc = SubDirMK(ByVal SubDirName$)

 Name: SubDirRM Type: FUNCTION

 Syntax: errc = SubDirRM(ByVal SubDirName$)

 Changes (SubDirCH), Makes (SubDirMK) or Removes (SubDirRM) the sub
 directory specified by SubDirName$. The advantage over BASIC's native
 sub dir functions is case of an error, rather than an error CONDITION
 being forced on your code, an error CODE is returned. The return code is
 set (non zero) if an error is encountered.

 Name: SubDirExist Type: FUNCTION
 Syntax: RetCode = SubDirExist(ByVal mask$)

 Returns a non zero value if a given sub directory exists, and zero if it
 does not.
 Example:
 IF SubDirExists("QB45") THEN
 CHDIR "QB45"
 ELSE
 PRINT "No can do"
 END IF

 Copyright (C) InfoSoft, 1991, 1992
 30

 Name: Swap? Type: SUBS
 Syntax: CALL SwapI(a%, b%)
 CALL SwapL(a&, b&)
 CALL SwapS(a&, b&)
 CALL SwapD(a&, b&)
 CALL SwapC(a&, b&)

 Visual Basic lacks an instrinsic function to swap or swicth variable
 contents. WGLib provides these in 5 versions to swap variables in any of
 the 4 data types integer (SwapI), long integer (SwapL), single precision
 (SwapS), double (SwapD) or currency (SwapC). Any return from these
 should be ignored as meaningless.

 Name: SwapStr Type: SUB
 Syntax: CALL SwapStr(a$, b$)

 Performs a compleat and comprehensive swap of 2 strings.

 Name: SysTicks Type: FUNCTION
 Syntax: TicksSoFar& = SysTicks&()

 SysTicks returns the number of clock ticks that have elapsed since
 midnight. This allows for an even finer resolution of time that SysTime
 or TIMER. Note that SysTicks returns a LONG integer.

 Name: TimerToggle Type: SUB
 Syntax: CALL TimerToggle(ByVal TimerNum, ByVal Toggle)

 TimerToggle and TimerElapsed provide for an assembler based medium
 resolution set of timers. The granularity of these timers is approx-
 imately smaller than BASIC's TIMER function which is seconds based.

 The TimerToggle and TimerElapsed functions allow for 5 different time
 slots so that you can track several different processes. When invoking
 TimerToggle, TimerNum should be 1 to 5 indicating the timer to toggle.

 The Toggle parameter indicates whether you are starting or stopping that
 timer: 0 HALTS or stops the timer, any other value starts it. If a given
 timer has already been started, issuing another START command for it
 causes the previous start time to be overwritten - a timer cannot be
 RE-started.

 Copyright (C) InfoSoft, 1991, 1992
 31

 Name: TimerElapsed& Type: FUNCTION
 Syntax: ProcTime& = TimerElapsed&(ByVal TimerNum)

 Fetches the number of elapsed clock ticks since the specified timer was
 started. If the timer was never started, garbage is returned. TimerNum
 refers to an integer 1 to 5 indicating which timer elapsed time is to be
 returned. TimerElapsed& returns a LONG INTEGER, so be sure to use the
 right data type. Also TimerElapsed& does not do an implicit timer stop
 function, it merely returns the difference of the start and stop ticks
 for that timer. Example:

 CALL TimerToggle(1,1) ' start timer one
 ..
 CALL TimerToggle(1,0) ' stop timer one
 ProcTime& = TimerElapsed&(1) ' get elapsed timer ticks
 ' into ProcTime&

 Name: VBLoaded Type: FUNCTION
 Syntax: Result = VBLoaded()

 This simply checks to see if the currently executing program is VB.EXE.
 The use for this is esoteric but allows you to determine of the process
 executing in memory is an .EXE or a program image being executed by
 VB.EXE. Possible returns are:
 0 VB Not loaded - EXE file executing
 1 VB.EXE loaded

 Name: ValidDrv Type: FUNCTION
 Syntax: result = ValidDrv(ByVal drv$)

 ValidDrv tests a given character passed to see if it is possibly a valid
 drive character. The return is 0 or non zero indicating if the drive is
 valid and available. The spectacular thing about this function is that
 it returns LOGICAL, not just physical drives, so that if the DOS version
 is greater than 3.0, if SUBST or networking software are in use, ValidDrv
 will return correct information - this is done by accessing the IOCTL
 functions if DOS 3.0 or greater is active. The only possible non true
 return would be drive B: in which, the system recognizes A: as B: when
 only one floppy is installed.
 Example:
 DECLARE FUNCTION ValidDrv%(ByVal a$)
 ..
 ..
 FOR x = 1 TO 26
 msg$ = CHR$(x+64);
 IF ValidDrv(CHR$(x+64)) THEN
 msg$ = msg$ + " is a valid, active drive letter."
 ELSE
 msg$ = msg$ + " is not a valid drive letter."
 END IF
 NEXT x

 Copyright (C) InfoSoft, 1991, 1992
 32

 Name: VARPTR Type: FUNCTION
 Syntax: vptr = VARPTR(thing)

 One of the things left out in VB from other Microsoft BASIC
 implementations was VARPTR. This returns the offset of a variable or
 structure. Useful in some converting some older QB code to VB, but be
 careful! Winows managemes memory somewhat differently than DOS, which

 may be impacted by direct memory acces.

 Name: VARSEG Type: FUNCTION
 Syntax: vseg = VARSEG(thing)

 Returns the memory segment of a passed variable or structure. This is a
 mainstay of vaious DOS QB versions but was not implemented in VB.

 Name: VerifyGet / VerifySet Type: FUNCTION / SUB
 Syntax: vflag = VerifyGet()
 Syntax: CALL VerifySet(ByVal vflag)

 Sets or gets the DOS VERIFY switch. This is not a 'read after write'
 operation as is sometimes thought, but DOS will check the CRC of the data
 written and compare it to the source. Note that if you intend to alter
 such a system switch, it is good programming practice to restore it to
 its original setting when your program terminates, this switch can be
 determined via VerifyGet. In calling VerifySet, 0 turns VERIFY OFF, 1
 turns it ON. Example:
 Vflag = VerifyGet
 ..
 ..
 CALL VerifySet(VFlag)

 Name: ValFileName Type: FUNCTION
 Syntax: errc = ValFileName(ByVal fil$, DOSCode)

 This checks a string you pass it to determine if the string is a valid
 filename. Pre testing a string that you may have gotten from end user
 input, helps avoid runtime errors later on and in the case of novice end
 users allows, considerable feedback from your program on what is wrong
 with a filename typed in.

 The process is twofold - it tests for characters such as ,[>< and also
 attempts to open the file and returns 2 error codes. In the case of the
 character test, the FUNCTION returns 0 if it finds no offending
 characters, or the ASCII value of any invalid filename character. This
 allows you to be able to give apparently intuitive feedback to users on
 valid filename characters.

 Copyright (C) InfoSoft, 1991, 1992
 33

 A second pass is needed to test drive and path validity. To test this,
 ValFileName attempts to open or create the file and any DOS error will be

 in the parameter DOSCode:
 3 - Drive or path not found
 4 - No handle available ("Too Many Files")
 5 - Access denied (already opened on multi system)
 80 - file exists.

 NOTES:
 1) VFNAME does NOT actually create or open the file! It just
 pre-tests for any possible runtime error in trying to do so.
 2) VFNAME requires DOS 3.x
 Example:

 DECLARE FUNCTION VFName%(ByVal fil$, DOScode%)
 ..
 getfname:
 fil$ = Text1.Text = fil$

 CharCode = VFName(fil$, DOSCode)
 IF CharCode THEN
 ret = MsgBox("Sorry, but '"+CHR$(CharCode)+"' is illegal in
 filenames!",48,"Ooops!")
 END IF

 Name: VLabelGet Type: FUNCTION
 Syntax: VLabel$ = VLabelGet$(Drive)

 Allows you to get the volume label on any attached disk: (0=default
 drive, 1 = A:, 2 = B: etc). Volume Labels are always 11 characters, so
 when using VLabelGet you will get back an 11 character string regardless
 of the number of characters in the string.

 Name: WinCurTime Type: FUNCTION
 Syntax: ticks& = WinCurTime

 Retrieves the current WINDOWS time.

 Name: WinDirectory$ Type: FUNCTION
 Syntax: win$ = WinDirectory$()

 Returns a string representing the directory where WINDOWS resides.

 Copyright (C) InfoSoft, 1991, 1992

 34

 Name: WinKBFuncKeys
 Syntax: NumFKeys = WinKBFuncKeys()

 Returns the number of function keys on the installed keyboard. This can
 be handy in reassigning F11 and F12 if they are not on the KB.
 Return: 1 = 10 Function keys 4 = 12
 2 = 12 (sometimes 18) 5 = 10
 3 = 10 6 = 24

 Note: This is as per the WINDOWs documentation, but at least WIN 3.1
 seems to return the actual number of function keys (10, 12, 18 etc).

 Name: WinKeyBdType type: FUNCTION
 Syntax: kbtype = WinKeyBDType()

 Returns an integer code indicating the type of keyboard driver intalled
 in WINDOWS. 1 = IBM PC/XT 83 key style
 2 = Olivetti 102 keyboard
 3 = IBM/AT 84 compatible
 4 = IBM enhanced 101/102 compatible
 5 = Noika 1050
 6 = Noika 9140

 Name: WinMem Type: FUNCTION
 Syntax: mem = WinMem&()

 Returns the amount of system resources available (free). This is a long
 integer and includes RAM as well as swap files memory.

 Name: WinMode Type: FUNCTION
 Syntax: WMode = WinMode()

 Returns the mode that WINDOWS is operating in, Standard or Enhanced.
 Since VB will not run in REAL mode, this mode is not queried nor
 returned. A return of 1 = Standard mode while 2 = Enhanced.

 Name: WinMouse Type: FUNCTION
 Syntax: ret = WinMouse()

 Simply polls the WIN API to see if a mouse is installed and/or operable.
 The return is zero for false, non zero for true.

 Copyright (C) InfoSoft, 1991, 1992
 35

 Name: WinPrgName Type: FUNCTION
 Syntax: EXEName$ = GetWPrgName$

 WinPrgName polls the WIN API and returns a string with the drive/pathname
 of the currently executing program. (See also ArgCnt and ArgVar). Note:
 WinPrgName will return different information in the VB environment than
 as a .EXE file, because the program running is VB.EXE and NOT your
 program. Example:

 EXEName$ = GetWPrgName$
 ' returns "C:\DIRNAME\FOOBAR.EXE"
 Text1.text = "Program running is: "+ EXEName$

 Name: WinSysDir$ Type: FUNCTION
 Syntax: SystemDir$ = WinSysDir$()

 Returns a string indicating the pathname of the Windows SYSTEM directory,
 typically "\WINDOWS\SYSTEM".

 Name: WinSpkrSnd Type: FUNCTION
 Syntax: WinSpkrSnd(ByVal freq%, ByVal dur%)

 Sounds the speaker for the specified duration in the specified frequency.
 Note that while this has the same syntax as SpkrSnd in our GLib for
 QB/QBX, it is radically different in that it performs it's speaker
 operations via the WIN API.

 Name: WinTempDirectory$ Type: FUNCTION
 WinTempDrive$
 Syntax: TempDrv$ = WinTempDrive$()
 TempDir$ = WinTempDirectory$()

 Returns a string representing the optimum drive and or directory for
 creating temporary files.

 Name: WinVer Type: FUNCTION
 Syntax: WVer = WinVer()

 Returns the version of WINDOWS running. The return is a whole number and
 should be divided by 100 to get the true minor version.

 Copyright (C) InfoSoft, 1991, 1992
 36

 Name: XLate Type: FUNCTION
 Syntax: errc = XLate(source$, ByVal table$)

 This will translate or substitute all characters in SOURCE$ from the list
 of characters in TABLE$ based on their ASCII value. Note that since this
 may be as high as 255, that TABLE$ should allow for all possibilities and
 be 256 characters long. This provides for an easy and configurable
 encryption scheme.
 Example:
 FOR x = 1 to 256
 Table$ = Table$ + CHR$(256 - x)
 NEXT x
 Serial$ = "123456" ' '1' becomes ASCII 206
 errc = XLate(Serial$, Table$) ' '1' = 49 and 255 - 49 = 206.

 Name: ZellerDay Type: FUNCTION
 Syntax: DCode = ZellerWeek(ByVal month%, ByVal day%, ByVal yr%)

 This uses Zeller's Congruence to determine the day of week for any valid
 date. Example:

 WeekDay = ZellerDay(5, 17, 1991) ' returns 3 for Wed

 Text1.Text = DayName$(WeekDay)

 Copyright (C) InfoSoft, 1991, 1992
 37

 II. VB Custom Properties Actions

 The following are specially designed routines that allow you to
 perform special operations on many of the controls that come with Visual
 BASIC. Note that while these are not actually properties, if carefully
 called, they can appear to be such.

 Name: CBClearList
 Syntax: CALL CBCLearList(Ctl AS CONTROL)

 This allows you to instantly clear the contents of a Combo Box. Rather
 than looping thru each element to set the string to NULL this calls
 directly upon the the WIN API to reset the contents of the control passed
 thereby freeing that memory with a minimum of hassle.

 Name: CBShowList
 Syntax: CALL CBShowList(Combo AS CONTROL)

 Forces the list attached to a Combo Box to drop down, thereby preventing
 the end user from having to click on the open button to see the choices.
 For maximum visual effect, this should be called after the size of the
 combo list has been established. An ideal location for this is in the
 GotFocus Event.

 Name: FrmFlash
 Syntax: CALL FrmFlash(ByVal hWnd)

 Flashes a form or window as if it has the focus, then turns it off. The
 flash is that of the borders and title bars assuming their 'active'
 color. This can be especially effective in background type DDE message
 windows to indicate the contents have changed. Note that the parameter
 required, hWnd or a handle to a window or form, is not available from VB,
 but is via our GetCtrlHnd. Also, hWnd is a reserved word in VB.

 Name: LBClearList
 Syntax: CALL LBCLearList(Ctl AS CONTROL)

 Like CBClearList, this allows you to instantly clear the contents of a
 List Box. Rather than looping thru each element to set the string to
 NULL this calls directly upon the the WIN API to reset the contents of
 the control passed thereby freeing that memory with a minimum of hassle.

 Copyright (C) InfoSoft, 1991, 1992
 38

 Name: GetCtrlHWnd%
 Syntax: WHandle = (AnyVBControl AS Control)

 There are many things you can do by calling the WIN API directly from
 Visual BASIC, but most, if not all, of them require that you pass the
 hWnd (WINDOWS handle) as part of the syntax, yet VB provides no easy
 access to hWnd. The Window (or control) Handle can be gotten in VB but
 it is very slow and cumbersome. GetCtlHWnd provides easy access tot eh
 control handle. Note: This is a very advanced routine and should only be
 used by those who have a documented source of WIN API calls.

 Name: LBCLearList
 Syntax: ignore = LBClearList(ListCtl As Control)

 Once a list box has been created, it is cumbersome and slow to delete all
 the items in it solely using VB. LBClearList allows you to instantly
 clear the contents of a list box with one line of code.

 Name: LBFindPreFix

 Syntax: index = LBFindPreFix(Ctl As Control, ByVal Search$)

 Passed a string, this will search the contents of a list box and return
 the index of the first element that begins with the string passed.

 Note that this is not an INSTR type search, but it finds the element that
 starts with Search$. Use of this WIN API function is how WinHelp finds
 and updates the current selection as you type in characters in the SEARCH
 box. The function returns the index os the element with matches the
 passed string.

 Name: LBGetFirst
 Syntax: index = LBGetFirst(ListCtl As Control)

 Passed a valid list box control, this funtion returns the index of the
 first visible item. See also LBSetFirst.

 Name: LBSetFirst
 Syntax: errc = LBSetFirst(ListCtl As Control, ByVal Index)

 Passed a valid ListBox control, this sets the first visible element to
 that of INDEX.

 Copyright (C) InfoSoft, 1991, 1992
 39

 Name: TextBoxFLoad
 Syntax: retc = TextBoxFLoad(TextCtl As Control, ByVal fil$)

 One of ther most excruciatingly slow aspects of VB and Control
 manipulation is loading a file, one line at a time into a (MultiLine)
 ListBox. TextBoxFLoad cuts out one of the 'middlemen' by bypassing most
 of the VB API and goes directly to the WIN API to load the specified file
 directly into the TextBox. By avoiding VB and being in assembler, the
 time saved in the loadin process is incredible.

 Name: TBSizeLimit
 Syntax: retc = TBSizeLimit(TextCtl As Control, ByVal Size%)

 While text boxes are neat as ready made input controls, they lack a great

 deal of functionality. One thing missing is the ability to limit the
 number of characters input. TBSizeLimit allows you to specify in SIZE
 the maximum number of characters to accept. For those familiar with GLIB
 for DOS style QBs, this is like MFed's FSize parameter. See also
 TBPassword.

 Name: TBPassWord
 Syntax: TBPassWord(TextCtl As Control, ByVal Char%)

 The invocation of this function allows you to specify the echo to echo
 when the end user types in a character, allowing you to devise a password
 style input box. Char is the ASCII code of the character to echo.

 Copyright (C) InfoSoft, 1991, 1992
 40

 III. Visual Basic Custom Controls

 1. Clock

ä y Ð ¤ q >… * (ÿ è è▯▯▯▯▯▯▯ ▯ ▯ ▯▯▯ ▯▯▯▯▯▯▯ � ▯▯ ▯▯▯ ▯ ▯ PBrush▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯
0 0 48 ▯▯▯

28 @ BM v (0▯ ▯▯▯ ▯▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ Ä Ä € € €▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯ ▯▯▯
€ € € € €€ €€▯ ▯▯▯ ▯ ▯ ▯▯

€ ÀÀÀ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿÿ ÿÿÿ ÿÿÿ▯ ▯▯▯ ▯▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯ ▯▯ ▯
ÿð ÿÿÿÿÿ ÿÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯ ▯ ▯ ▯
ÿÿð ˆ‰™™˜ˆˆˆ‰™™™ˆˆ™™™˜ˆ€ ÿð ˆ™™™™ˆˆˆ™™™™˜‰™™™™ˆ€ ÿð ˆ‰™™™˜ˆˆ™ˆˆ▯ ▯ ▯ ▯ ▯
‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜ˆˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜ˆˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜™ˆ™ˆˆ‰˜▯ ▯ ▯ ▯ ▯ ▯
‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜™ˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆ‰™™˜™ˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆ‰™™˜ˆˆ™ˆˆ‰˜▯ ▯ ▯ ▯ ▯ ▯
‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜ˆˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜ˆˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜™ˆ™ˆˆ‰˜▯ ▯ ▯ ▯ ▯ ▯
‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜™ˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆˆˆˆ‰˜™ˆ™ˆˆ‰˜‰˜ˆˆ™ˆ€ ÿð ˆ‰™™™˜ˆˆ™ˆˆ‰˜▯ ▯ ▯ ▯ ▯ ▯
‰˜ˆˆ™ˆ€ ÿð ˆ™™™™ˆˆˆ™™™™˜‰™™™™ˆ€ ÿð ˆ‰™™˜ˆˆˆ▯ ▯ ▯ ▯
‰™™™ˆˆ™™™˜ˆ€ ÿÿ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ ÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿð ÿÿÿÿÿ▯ ▯ ▯ ▯ ▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
ÿÿ˜ˆ ▯▯ ▯▯▯▯▯▯▯▯

 Clock is a Custom Control for Visual BASIC that allows you to
 constantly display a digital clock on any form or window. This approach
 to time display elimiates the need for you to develop a timer routine and
 update the screen.

 While this is a fairly intuitive and straight forward control, it is
 necessary to note that WINDOWS allows for only 30 timers to be active at
 a time. While 30 is a lot, you must allow for this depending on the
 number of instances of the CLOCK custom control, the use of the WINDOWS
 on screen clock and the number of TIMERS you have in use.

 Standard Properties supported:
 CtlName Width DragIcon
 Index Height Tag
 BackColor Visible FontName
 ForeColor Enabled FontSize
 Left Parent
 Top DragMode

 Custom Properties supported:
 AlarmEnable TimeFormat
 AlarmHr TimeLabel
 AlarmMin TimerMode
 HideSecs TimeZone

 Custom Events supported:
 Alarm

 Clock Custom Properties Defined

 Name: Alarm_Enable Type: BOOLEAN

 When enabled, and the system time matches that defined as the alarm
 time (Alarm_Hr: Alarm_Min), the Alarm Event is triggered. The event is
 triggered each second for one full minute - until the system time no
 longer matches that of the Hr:Min designated as the alarm time.
 It is up to your program to supply the actual activity to be
 performed at the specified time. It may be as simple as a series of
 beeps (like in an appointment book application), or it may signal that it
 is time to exit your application and execute another (such as a timed
 EMail link).

 Copyright (C) InfoSoft, 1991, 1992
 41

 Name: Alarm_Hr Type: INTEGER

 Defines the hour that the alarm will sound. Must be used in
 conjunction with Alarm_Enable and most likely Alarm_Min.

 Name: Alarm_Min Type: INTEGER

 Defines the minute that the Alarm Event will trigger. This is only
 of any matter if Alarm_Enable is active (TRUE) and will likely be used in
 conjunction with Alarm_Hr.

 Name: HideSecs Type: BOOLEAN

 This TRUE/FALSE property allows you to hide the display of seconds in
 your clock display. In some instances it may be more aesthetically
 pleasing to simply display in Hrs:Min format rather than Hrs:Min:Sec.

 There are several benefits in hiding the seconds display. First, the
 WIN API has to process many, many requests for action (called messages)
 from every program active or running and still contend with things that
 the end user may do such as rearrange windows on screen requiring any
 number of screen updates. To contend with the virtual blizzard of
 messages, the WIN API uses a queque type approach.

 So, when you've installed the Clock Custom Control, while we've
 designed to to update the display more frequently than once per second
 the speed with which other processes act on their messages has an impact
 on how often Clock will actuall get it's messages. The effect of this on
 slower systems, such as 80286 systems means that the time could 'jump'
 more than one second occasionally.

 Next, a future version of Clock will implement a less demanding timer
 when HideSecs is TRUE, thereby freeing up system resources for other
 processes running.

 Name: TimerMode Type: BOOLEAN

 Rather than displaying the current time with the default TimerMode as
 FALSE, you can tailor Clock to display the time elapsed (TRUE) from a
 desired starting time. In this mode, the TimeFormat setting is ignored
 and the time display will ne in hh:mm format, but the HideSecs setting

 will be honored. Naturally, the Alarm Property is not available.

 The Enabled standard properties have a special impact on the
 ElapsedTimer property. When FALSE and Clock is not in TimerMode, the
 currect time is simply displayed. However, more extensize control is
 required for Elapsed Mode, specifically what the starting time is. By
 default, the starting time will be the time that the Clock/Timer was
 created, however to supress the timer display until you are ready, you

 Copyright (C) InfoSoft, 1991, 1992
 42

 can either set the VISIBLE property to FALSE or set the ForeGround Color
 to that of the BackGround. Reversing either of these will normalize the
 display. Then to set a new starting base time, simply
 set the ENABLE property to 1. Each time your code sets or resets the
 ENABLED property to 1, the starting time is reset.

 Secondly, if the Clock is in Elapsed Timer Mode, but is not Enabled,
 it may be desirable to hide the display by setting the Standard Visible
 property to FALSE.

 Name: TimeFormat Type: ENUMERATED

 At design time, you can designate the format of the Clock display.
 The choices allow you to display the hours in either 12 or 24 hour
 format.

 Name: TimeLabel Type: ENUMERATED

 Allows you to designate the Clock's time display label. You may
 choose from AM/PM, am/pm or None.

 Name: TimeZone Type: INTEGER

 The TimeZone property allows for each Clock display to represent the
 local time in another time zone. Simply initialize the value to the
 time difference for the desired locality. To display Eastern Time
 when the system is in the Central time zone, set TimeZone to -1; to
 display Mountain Time from the same zone TimeZone would be set to 1
 and naturally. To display the time of most MidEast countries, subtract
 1200 years.

 In all instances, local time would be displyed by setting TimeZone to
 0. Further, the value of TimeZone should be in the range 0 to 24.

 Name: Alarm Clock Custom Event

 The Clock Custom Control will trigger the Alarm Event when the following
 are true:
 - AlarmEnable is true
 - AlarmMin equals the current system time minute
 - AlarmHr equals the current system time hour
 If any ONE is not true the Alarm will not sound. The Event will be
 triggered approximately once per second, or until your code invalidates
 one of the above conditions. (No, we don't have a Snooze property).

 Copyright (C) InfoSoft, 1991, 1992

 43

 2. Meter

ä § Ì h¡ * (Ð▯▯▯▯▯▯▯ ▯▯ ▯▯▯▯▯▯▯▯▯▯▯ � ▯▯ ▯▯▯ ▯▯ PBrush▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯
0 0 53 ▯▯▯

31 à BMÚ v (5 d Ä Ä € € €▯ ▯▯▯ ▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯ ▯▯▯
€ € € € €€ €€▯ ▯▯▯ ▯ ▯ ▯▯
€ ÀÀÀ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿÿ ÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöfÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯▯▯ ▯▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯ ▯▯ ▯
ÿÿÿÿÿýÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿû»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöfÿÿøˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆÿýÿÿÿ
wwwwwwwwwwwwwwwwwwwwwwˆÿûÿÿÿ xÿÿÿÿð▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

xÿÿÿÿð îîîîïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ xÿÿÿÿð îîîîïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ xÿÿÿÿð îîîîïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ x▯▯▯▯▯▯ ▯ ▯ ▯ ▯ ▯ ▯
ÿýÝÿð îîîîïð ÿ ÿÿÿðÿÿÿ xÿû»ÿð îîîîïð ÿð ðÿÿ ÿÿ xÿöfÿð îîîîïð ÿÿÿÿÿ ÿ ÿðÿÿÿ xÿÿÿÿð▯ ▯▯▯ ▯▯▯ ▯ ▯ ▯▯▯ ▯▯ ▯▯ ▯ ▯ ▯ ▯ ▯ ▯
îîîîïð ÿÿÿÿÿ ÿðÿÿÿÿÿ xÿÿÿÿð îîîîïð ÿÿÿÿÿ ÿÿ ÿÿÿÿ xÿÿÿÿð îîîîïÿ ÿÿð ÿÿðÿÿÿÿ xÿÿÿÿð îîîîïÿð▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯ ▯▯ ▯ ▯
ÿ ÿÿÿ ÿÿÿ xÿÿÿÿð îîîîïÿÿÿ ÿ ÿÿÿÿÿðÿÿÿ xÿÿÿÿð îîîîïÿÿÿ ÿ ÿÿÿðÿÿ ÿÿ xÿù™ÿð îîîîïð ÿ▯▯ ▯▯▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯▯ ▯▯

ÿ ÿðÿÿ xÿò"ÿð îîîîïÿ ÿÿ ÿðÿÿÿÿÿ xÿôDÿð îîîîïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ xÿù™ÿð îîîîïÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯▯ ▯ ▯ ▯▯ ▯▯▯ ▯ ▯ ▯ ▯
ÿÿÿ xÿó3ÿð îîîîïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿð ÿÿÿÿÿÿ▯ ▯ ▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯�

ÿÿÿ▯▯▯▯▯▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯▯▯▯▯▯▯▯▯▯
 Meter is a Custom Control for Visual BASIC that allows you to display
 a meter of the percentage of a job that is done. The visual effect is
 that seen when installing WINDOWS where a horizontal bar slowly gets
 filled in showing the percentage of the job that is complete.

 When defining the Fore and Back colors, it is the ForeGround color
 that fills in the bar as the percentage increases, replacing existing
 BackGround color.

 When locating and sizing a Meter Control on your form at design
 time, it need not be a horizontal style bar, Meter supports vertical
 meters as well as an Inverse property. The Inverse property causes the
 Meter to act in reverse mode, that is it begins filled in (with the
 ForeGround color) and 'drains' to an empty bar.

 Standard Properties supported:
 CtlName Width
 Index Height
 BackColor Visible FontName
 ForeColor Enabled FontSize
 Left Parent
 Top Tag

 Custom Properties supported:
 Units_Total
 Units_Done
 Inverse
 VerBose

 Custom Events supported:
 None

 Copyright (C) InfoSoft, 1991, 1992
 44

 Meter Custom Properties Defined

 Name: Inverse Type: BOOLEAN

 When TRUE, the Meter starts out filled with the ForeGround color and
 'drains' to an empty Meter as the percentage complete increases.
 The default (FALSE) setting allows the Meter Control to fill with the
 ForeGround Color as the percentage increases.

 Name: Verbose Type: BOOLEAN

 When set to TRUE, as the percentage complete increases, the Meter
 Control is labeled with the actual percent. A FALSE setting leaves the

 control unlabelled and percentage done (or percentage left) is simply
 implied from the display.

 The mode of text display will 'clip' any text that will not fit in
 the Meter Control and can cause an ungainly appearance. This is more
 likely with narrowish vertical meters where '100%' may not fit, but is
 also likely with horizontal meters when either of the SpecialFX are used.
 See the SpecialFX Property for more information regarding this.

 Name: UnitsDone TYPE: INTEGER

 In order to display a meter of the percentage done, the internal
 control code must know the total number of parts in the job and what the
 current number of parts done are. These values are handled by the Custom
 Properties UnitsTotal and UnitsDone.

 The Meter Control code will handle all the calculations and color the
 Meter Control the appropriate amount, you simply set the amounts of the 2
 units--- properties.

 The UnitsDone property is updated as your program completes portions
 of your process. When the WIN API notifies the Meter Control that
 UnitsDone has changed, the Meter Control code updates the meter display.
 Note that simply addressing UnitDone cause WIN API to send a message to
 the Meter Control, even if the new value is the same as the old.
 However, Meter checks to see if the percentage has changed and exits
 early if there is no change.

 See UnitsTotal for more information.

 Copyright (C) InfoSoft, 1991, 1992
 45

 Name: UnitsTotal Type: INTEGER

 As explained in the description of the UnitsDone property, the Meter
 Control Code will calculate the percentage from the values of UnitsDone
 and UnitsTotal. What these represent however is up to you.

 Being of the data type integer (short), valid values will range from
 0 to 32,767. But the actual amounts can be representative and
 independant of what is actually being done. For example, setting
 UnitsTotal to 100, allows you to directly manipulate the percentage done
 since whatever you set UnitsDone to will be the percentage displayed in

 the Meter Control.

 In the case of an installation process, let's assume you have to copy
 2,509,832 bytes from floppy disks and the number of bytes read so far is
 what you wish to base the UnitsTotal Property on. Since 2.5 million is
 beyond the legal range of UnitsTotal, simply divide by 100 and set the
 UnitsTotal Property to 25098. Then as each file is copied, simply divide
 the new aggregate copied amount by 100 and the Meter Control will be
 accurate. The chances of such a wide spectrum Meter actually registering
 100 of over 35,000 units on a 6' or so Meter is remote. Given that files
 can vary widely in size a byte method is more accurate than a file count
 method.

 Another example would be in loading an index or random access file.
 The UnitsTotal could be the size of the file in records, then every two,
 three or five records, depending on the size of UnitsTotal, you could
 update the UnitsDone property so as to inform the Meter Control that the
 display needs updating.

 Copyright (C) InfoSoft, 1991, 1992
 46

 3. Extended Control Text Box (XtdEd)

ä §X ¤ ñ éš * (l▯▯▯▯▯▯▯ ▯ ▯▯▯ ▯▯▯▯▯▯▯ � ▯▯ ▯▯▯▯ ▯

PBrush▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯
0 0 40 ▯▯▯

28 À BM¦ v ((0 Ä Ä € € €▯ ▯▯▯ ▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯ ▯▯▯
€ € € € €€ €€▯ ▯▯▯ ▯ ▯ ▯▯
€ ÀÀÀ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿÿ ÿÿÿ ÿÿÿ▯ ▯▯▯ ▯▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯ ▯▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆÿÿÿwwwwwwwwwwwwwwwwÿÿð▯▯▯▯▯▯▯▯▯▯▯▯

ÿÿð ÿÿð ÿÿÿÿÿÿÿÿÿÿÿÿÿð ÿÿð ÿÿÿÿÿÿÿÿÿÿÿÿ ð ÿÿð ð ÿÿ ÿ ÿ ÿ ð ÿÿ▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯▯ ▯ ▯
ð ð ÿÿ ð ð ð ÿ ð ÿÿð ÿ ÿð ð ð ð ÿ ð ÿÿð ÿð ÿð ð ð ÿ ð ÿÿð ÿÿ ÿð ð ð ÿ ð ÿÿð ÿÿ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯ ▯ ▯ ▯ ▯ ▯ ▯

ÿð ð ð ÿ ð ÿÿð ÿð ÿ ÿ ÿ ð ÿÿð ÿ ÿð ð ÿÿð ÿ ð ÿÿð ð ÿÿ ð ÿÿð ÿ ð ÿÿð ð ÿÿ ÿ▯▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯ ▯▯ ▯▯▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯
ÿÿÿð ÿ ð ÿÿð ÿÿÿÿÿÿÿÿÿÿÿÿ ð ÿÿð ÿÿÿÿÿÿÿÿÿÿÿÿÿð ÿÿð ÿÿð▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯

ÿÿ▯▯▯▯
▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

 Overview

 By far, one of the popular and useful tools in our GLib toolbox for
 QB/QBX is that of MFED, a text input control routine. Virtually
 everything that can be controlled in collecting user input can be
 programmed in. While VB's TextBoxes go along way in replacing MFed,
 there are still some things that MFed can do that you cannot do with a
 text box. So, we set out to replicate the key MFed capabilities in a
 custom control Text Box, and added a few facets available under WINDOWS.

 Several of the things that you can control in our XTDEdit control can
 be altered in a standard TextBox, but requires separate WIN API calls for
 each box - XTdEdit allows you to access them as built in properties.

 Properties List

 BACKCOLOR FONTNAME PARENT
 FORECOLOR FONTBOLD TAG
 LEFT FONTITALIC VISIBLE
 TOP FONTSTRIKE TABINDEX
 WIDTH FONTUNDER MULTILINE
 HEIGHT FONTSIZE
 TEXT ENABLED

 (Custom)

 ErrAlarm
 MaxSize
 InsertMode
 BadCharList
 NumsOnly
 ReadOnly

 Events Supported

 CLICK (std)
 CHANGING

 Copyright (C) InfoSoft, 1991, 1992
 47

 Name: MaxSize (INTEGER)

 Available at design and runtime, your code can control the length of the
 text string to be entered into an XtdEdit control. By setting the
 MaxSize property, the edit control rejects any characters beyond that
 length and optionally beeps based on the ErrAlarm property.

 The MaxSize property can be set at design time via the VB drop down
 properties box. If one text box is doing multiple edits, your code can
 set the current maximum character length at run time.

 An obvious use of this is in data entry applications where you wish to
 collect only a certain number of characters, such as for a filename.

 Name: InsertMode Custom Property (BOOL)

 One of the things that irks me about the standard WIN Text Box is that
 they all start in overwrite mode. Type one character and the previous
 entry is gone. Even for the experienced user, tapping a cursor key, then
 backing up to preserve the original text requires you to tap the Insert
 Key for a true inseret mode.

 The InsertMode Custom property allows you to design the control to work
 as other TextBoxes do (FALSE) or to support InsertMode upon startup
 (TRUE).

 When set to TRUE, the XtdEdit Control does not just emulate insert mode,
 but it sets the WIN API for it. That is, upon entry if the start up is
 Insert Mode TRUE, XtdEdit sends a message to the WIN API to toggle the
 Insert Key ON. For the balance of the time that the edit control has the
 focus, it monitors the Insert state to see if the user has toggled it
 off. Should the user do so, then conventional text box input behavior
 takes place. Otherwise the control remains in overwrite mode.

 Name: NumsOnly Custom Property (BOOL)

 In the case where the input your application requires should be numeric
 only, your only option with a standard text box is to examine the
 contents or .TEXT property after the control loses focus.

 With XtdEdit's NumsOnly Property, when set to true, the control examines
 each character and accepts it only if it is numeric. This makes XtdEdit
 ideal for data base entry where any number of fields such as phone
 numbers, zip codes and the like are numeric only.

 Copyright (C) InfoSoft, 1991, 1992
 48

 Name: BadCharList Custom Property (TEXT string)

 Like with the entry of numeric characters for phone numbers, there are
 instances where there are characters that you just do not want in the
 entry. Filenames are one example, but with data that will be saved to a
 sequential file, you will likely not want any commas in it.

 By listing or populating the BadCharList property with those characters
 that are forbidden in the entry, you instruct the XtdEdit control to
 reject these. If one is encountered, XtdEdit will discard it rather than
 add or append it to the text being entered.

 Name: ReadOnly Custom Property (BOOL)

 In some instances, it is desirable that the text in an edit box be Read
 Only. That is, it is for the user's information only and is not within
 their power to change it.

 An ideal example of this would be where you might have a record being
 edited displayed in one XtdEdit box where the user is editing. Another
 however, may be another XtdEdit control where the original record is
 displayed for comparison. The latter control should ideally be a
 ReadOnly control so that even when it receives the focus the user cannot
 change the contents.

 In this or other instances where you wish to display something to the
 user, without them changing it you can set the ReadOnly property to TRUE
 and even when the XtdEdit control receives the focus via the mouse or tab
 key sequence, they can scroll thru multi line controls and otherwise view
 the data, but cannot alter it.

 Name: ErrAlarm Custom Property (BOOL)

 This characteristic is one ported from MFed. Whenever a user violates
 the constraints that the above XTdEdit control properties impose on them,
 when ErrAlarm is set to TRUE, the speaker will sound.

 Some typical situations:
 - Entering a character found in BadCharList
 - Attempt to edit or change a ReadOnly control
 - Attempt to enter an Alpha character in a NumsOnly control
 - Entering a character that will cause the length of the text to
 exceed MaxSize

 Copyright (C) InfoSoft, 1991, 1992
 49

 CHANGING Custom Event

 One of the slickest things about the Windows Help system is it's ability
 to dynamically update the Search list. Open the SEARCH window and as you
 type each character into the text box, the contents or subject list is
 updated. With a standard text box, replicating such behavior is
 difficult at best, but easy with XtdEdit.

 After each characacter is qualified according to the custom properties
 above (NumsOnly, BadCharList etc), it is appended to the contents. At
 that instant (as much as anything happens instantaneously in Windows), a
 CHANGING event is triggered. This event therefore notifies your code
 that the contents of the edit control is being updated.

 Replicating the behavior found in the WIN help system in your own
 application is then quite simple. In response to the CHANGING event,
 simply call LBFindPreFix to get the first item in a list box that
 matches the contents of the XtdEdit control (XtdEdit.Text). If need be
 you can also use LBSetFirst to force the List Box to display that item.

 An ideal use and example of this would be in a Movie or VCR tape
 database. When searching for movies with a certain star or director, or
 even a title, as each character is entered you can respond in the
 CHANGING event to execute the code needed to display the applicable
 section of the list box.

 Copyright (C) InfoSoft, 1991, 1992
 50

 4. Enhanced Scroll Bars (EhVScroll, EhHScroll)

ä z¤ Ð 1 û– * (oè è▯▯▯▯▯▯▯ ▯ ▯▯▯ ▯▯▯▯▯▯▯ � ▯▯ ▯▯▯ ▯ ▯ PBrush▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯
0 0 79 ▯▯▯

48 BMö v (O 0 € Ä Ä € € €▯▯▯▯▯ ▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯ ▯▯▯
€ € € € €€ €€▯ ▯▯▯ ▯ ▯ ▯▯
€ ÀÀÀ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿÿ ÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷ÿÿÿÿÿÿÿÿÿ▯ ▯▯▯ ▯▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯ ▯▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ wwww ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯▯ ▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ ‡ ÿÿÿòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯ ▯ ▯▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿ € ‡ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯▯ ▯ ▯ ▯
ÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯ ▯ ▯
ÿ ÿÿÿ÷ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ▯ ▯ ▯▯▯▯▯▯ ▯
ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿ▯ ▯ ▯ ▯ ▯

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿ▯ ▯ ▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿò ÿÿÿ wwww ÿÿÿó wwwpˆˆˆˆ€÷▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯ ▯ ▯
www ˆˆˆˆˆˆ€÷www ÿÿÿ ˆˆˆ‡ ÿÿÿ÷ ˆˆˆpˆˆˆˆ€øˆˆ‡ ˆˆˆˆˆˆ€øˆˆ‡ ÿÿÿ ˆˆˆ‡ ÿÿÿ÷ ˆ ˆpˆˆˆˆ€øˆˆ‡ ˆˆˆˆˆˆ€øˆ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯
‡ ÿÿÿ ˆˆˆ‡ ÿÿÿ÷ € ˆpˆˆˆˆ€øˆˆ‡ ˆˆˆˆˆˆ€øˆ ‡ ÿÿÿ ˆˆˆ‡ ÿÿÿ÷ pˆˆˆˆ€øˆˆ‡ ˆˆˆˆˆˆ€ð ÿÿÿ ˆˆˆ‡ ÿÿ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯▯▯▯ ▯ ▯▯▯▯ ▯ ▯
ÿ÷ € ˆpˆˆˆˆ€øˆˆ‡ ˆˆˆˆˆˆ€øˆ ‡ ÿÿÿ ˆˆˆ‡ ÿÿÿ÷ ˆ ˆpˆˆˆˆ€øˆˆ‡ ˆˆˆˆˆˆ€øˆ ‡ ÿÿÿ ÿÿÿÿ ÿÿÿ÷ ˆˆˆpˆˆˆˆ€øˆˆ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯ ▯
‡ ˆˆˆˆˆˆ€øˆˆ‡ ÿÿÿ ÿÿÿ÷ ÿÿÿðˆˆˆˆ€ÿÿÿÿ ˆˆˆˆˆˆ€ÿÿÿÿ ÿÿÿ ˆˆˆˆ ÿÿÿ÷▯ ▯ ▯▯▯▯▯▯ ▯ ▯ ▯ ▯ ▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

ÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯ ▯ ▯ ▯ ▯

ÿ ˆˆˆˆ ÿÿÿöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿ▯ ▯ ▯ ▯ ▯ ▯
ÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿ÷ÿÿÿÿÿÿ▯ ▯ ▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆˆˆˆ ÿÿÿöÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯ ▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ wwww ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯▯ ▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯ ▯ ▯
ÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ € ‡ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯ ▯ ▯ ▯▯ ▯
ÿÿ ˆ ‡ ÿÿÿöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ˆ€ˆ‡ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿ▯ ▯▯ ▯ ▯ ▯ ▯
÷ ÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿ▯ ▯▯▯▯▯▯
ÿÿ÷▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

 When we were developing the Changing event for the XtdEdit control, it
 occurred to us that the CHANGING event would be ideal for Scroll Bars.

 Such an event, linked to Scroll Bars would make dynamic updates and fine
 tuning easier and faster for the user. So we developed a sub class of
 scroll bars that supported just that. We were somewhat dismayed that the
 VB Pro Toolkit turned out to have one as well, but since not everyone has
 $100 for a few controls, or needs the CDK or the Help Compiler, we
 decided to go ahead and release our Enhanced Scroll Bars with WGLib as
 well.

 The WGLib toolbox supports vertical Enhanced Scroll Bars (EnVScroll) as
 well as horizontal ones (EnHScroll). Both work the same as standard
 scroll bars with the exception of generating a CHANGING event which you
 have the option of not reponding to.

 Properties List

 LEFT ENABLED MIN
 TOP PARENT MAX
 HEIGHT TAG VALUE
 WIDTH LARGECHANGE
 VISIBLE SMALLCHANGE

 Events List

 CHANGE
 CHANGING

 Properties

 All the properties listed behave much the same as the standard
 properties for standard scroll bars do. You set the MIN and MAX range,
 SMALLCAHNGEs are generated by clicking the arrow, LARGECHANGEs are
 generated by clicking the scroll bar itself between the slider button
 (called the THUMB) and the arrow.

 Copyright (C) InfoSoft, 1991, 1992
 51

 CHANGING Custom Event

 The key enhancement of our Enhanced Scroll Bars is that each time the
 value changes, whether as a result of dragging the thumb, clicking the
 arrow or generating a LARGECHANGE by clicking on the Scroll Bar between
 the thumb and arrow, a CHANGING event is generated.

 In responding to the CHANGING event, you can get the current Enhanced
 scroll bar setting via the En?Scroll.Value property and update whatever
 is being scrolled (lists, colors, values etc). This gives a much
 snappier appearance to the application since the focus no longer has to
 be lost by the scroll bar in order for the result to be displayed.

 It is important to note that when a CHANGING event is triggered, the
 Enhanced Scroll Bar still has the focus. The triggereing of the
 CHANGING event simply allows you to take a 'time out' to update whatever
 is being scrolled. Having the result of the scroll being dynamically
 updated on the screen also makes it easier for the user to produce the
 exact right setting via scroll bars in one focus session.

 Copyright (C) InfoSoft, 1991, 1992
 52

 5. Keyboard Status Control (KBStat)

ä Ò È & ™ * (?&“ ö▯▯▯▯▯▯▯ ▯ ▯ ▯▯▯▯▯▯▯▯▯▯▯ � ▯▯ ▯▯▯ ▯ ▯ PBrush▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯
0 0 82 37 à BMÒ v (R % \▯▯▯ ▯ ▯▯▯ ▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯
Ä Ä € € €€ € € € €€ €€▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯ ▯▯

€ ÀÀÀ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿÿ ÿÿÿ ÿÿÿ▯ ▯▯▯ ▯▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯ ▯▯ ▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆˆˆÿÿÿ ÿÿÿÿ▯▯▯
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿ333ÿ▯▯▯
ÿÿ▯▯
ÿÿÿÿ ÿÿÿÿÿ ÿÿÿð▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

ÿÿÿÿ ÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿÿwwwÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿÿîîîÿÿÿð ˆˆ▯▯▯ ▯▯▯ ▯ ▯ ▯ ▯ ▯
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿÿ ÿÿÿð ˆ ˆ € € ÿÿÿÿ ÿÿÿð €ÿÿÿÿÿ▯ ▯▯▯ ▯ ▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯ ▯ ▯▯▯ ▯
ÿÿÿ ÿÿÿÿÿÿÿÿð€ÿÿÿÿÿÿÿÿ € ÿÿÿÿ ÿÿÿð €ÿÿÿÿÿðÿÿ ÿðð ðÿðð€ð ðÿ ÿ € ÿÿÿÿÿÿÿÿÿÿð▯▯ ▯ ▯ ▯▯▯ ▯ ▯▯▯ ▯ ▯▯ ▯▯ ▯ ▯ ▯
€ÿ ðÿÿ ÿððððððð€ÿðÿðÿ ÿ € ÿÿÿÿÌÌÌÿÿÿð €ðÿÿ ðð ÿ ÿððððððð€ÿðÿðÿ ðÿ € ÿÿÿÿ▯▯▯▯ ▯▯▯ ▯ ▯▯ ▯ ▯ ▯ ▯ ▯▯▯ ▯ ▯ ▯ ▯▯
ÿÿÿð €ðÿÿ ðÿ ÿ ðððððð€ÿðÿðÿ ÿ € ÿÿÿÿ ÿÿÿð €ðÿÿÿððÿ ð ððð ð€ÿðÿð ÿð▯ ▯ ▯▯ ▯▯▯▯ ▯ ▯▯ ▯ ▯ ▯▯▯ ▯ ▯▯▯▯ ▯ ▯▯ ▯ ▯▯

€ ÿÿÿÿ ÿÿÿð €ðÿÿ ð ÿ ðÿÿÿÿÿð€ÿðÿðÿÿÿÿ € ÿÿÿÿÿÿÿÿÿÿð €ðÿÿÿÿÿÿÿ ðÿÿÿÿÿð€ÿðÿ▯ ▯▯▯ ▯ ▯▯ ▯ ▯▯▯▯ ▯ ▯ ▯ ▯▯▯▯
ÿÿÿÿÿ € ÿÿÿÿˆˆˆÿÿÿð €ðÿÿÿÿÿÿÿ ÿðÿÿÿÿÿð€ÿðÿÿÿÿÿÿ € ÿÿÿÿ ÿÿÿð €ÿ ÿÿÿÿÿ ÿðÿÿÿÿÿð▯ ▯ ▯ ▯▯▯ ▯ ▯ ▯▯▯ ▯ ▯▯ ▯▯▯
€ð ÿÿÿÿÿ € ÿÿÿÿ ÿÿÿð €ÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿð€ÿÿÿÿÿÿÿÿ € ÿÿÿÿ333ÿÿÿð ˆ ˆ€▯▯ ▯ ▯ ▯▯▯ ▯ ▯▯ ▯ ▯ ▯ ▯▯▯▯▯▯▯▯ ▯▯▯▯

€ € ÿÿÿÿÿÿÿÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿÿ ÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯ ▯ ▯ ▯ ▯▯▯ ▯
€ ÿÿÿÿ ÿÿÿð ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ€ ÿÿÿÿ ÿÿÿð ÿ▯ ▯▯▯ ▯ ▯ ▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
ÿÿÿwwwÿÿÿÿ ÿÿÿÿÿîîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯
ÿÿÿÿÿÿÿÿ ÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯ ▯▯▯
ÿÿÿÿÿÿÿÿÿÿÿ ÿÿ▯▯▯
ÿÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯

 The Keyboard Status Control (KBSTAT) allows you to paste a display board
 onto your form that will dynamically reflect the status of the key board
 locks (Caps, Nums, Insert).

 The design was based off the WORD for WINDOWS status bar, since it was
 well done, well positioned and aesthetically appealing. In highly input
 intensive applications, a keyboard status bar such as this can be of
 great aid to the user, especially for touch typists who look at the
 screen far more than the keyboard.

 The KBStat control can be of any size and any location on your form. Too
 small of size however, and the contents of the control (the three
 indicator boxes) can be hard to read or chopped.

 KBStat is very, very Windows aware. Once installed, it periodically
 polls the WIN API to check on the status of the KB lock states. If
 changed, the new status will be updated and displayed. Like WINWORD, the
 indicator boxes are blank if off, or display "Caps", "Num" and "Ins" when
 each are ON.

 KBStat goes to quite some trouble to find a suitable font for usage based
 on the size of the control as the capabilities of the display device.
 Later implementations of KBStat will likely allow for FONTNAME
 properties, but for now, part of the charm of KBStat is is ease of use
 and universal compatibility.

 In the area of FORECOLOR and BACKCOLOR, the default is black on grey.
 Naturally, these can be changed via the properties box, but some
 combinations will look odd on KBStat controls. The thing to keep in mind
 is that the FORECOLOR is that of the text of the indicators, and that is
 it. BACKCOLOR is the background color of the parent box and indicators
 themselves, while the shading for 3D effects is always black, grey and
 white.

 Properties List

 FORECOLOR WIDTH PARENT
 BACKCOLOR HEIGHT DRAGMODE
 LEFT VISIBLE DRAGICON
 TOP ENABLED TAG

 (Custom Properties)
 STYLE

 Copyright (C) InfoSoft, 1991, 1992
 53

 STYLE (Custom Property) (ENUMERATED)

 KBStat supports 3 style modes: Convex, Concave and Flat.

 In the Convex style, the control appears to be raised above the rest of
 the form with the indicators sunken into that control or parent box. By
 far this is the most appealing.

 Concave has the control or parent box appearing to be sunken into the
 form, with the indicators raised above the parent box.

 Flat style is flat. Very flat. Neither the form nor the status
 indicators are accented.

 The terms concave and canvex refer to the appearance of the larger
 parent box, with the smaller indicator boxes or frames being the
 inverse.

 The Style property is read only at run time. Precluding the user or your
 code from changing the style of the KBStat control allows it to draw the
 special effects only once rather than each time the status is updated
 thereby creating less overhead.

 Copyright (C) InfoSoft, 1991, 1992
 54

 Acknowledgements

 The following have proved valuable in one way or another either in
 designing specific routines or as a general, MASM, system or QB
 reference:

 The Microsoft KnowledgeBase

 Norton Guides For Assembler

 Copyright (C) InfoSoft, 1991, 1992
 55

